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Abstract

A popular theory of business cycles is that they are driven by animal spirits: shifts in expecta-
tions brought on by sunspots. A prominent example is Howitt and McAfee (AER, 1992). We show
that this model has a unique equilibrium if there are payoff shocks of any size. This equilibrium
still has the desirable property that recessions and expansions can occur without any large exoge-
nous shocks. We give an algorithm for computing the equilibrium and study its comparative statics
properties. This work generalizes Burdzy, Frankel, and Pauzner (2000) to the case of endogenous
frictions and seasonal and mean-reverting shocks.
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1 Introduction
Recessions and expansions often occur without any large precipitating shocks. A
popular explanation for this is that with externalities, there can be multiple equilib-
ria, so the path followed by the economy can depend on agents’ expectations. These
expectations can shift unexpectedly when payoff-irrelevant variables (“sunspots”)
are observed, causing a recession or expansion.

This theory is not entirely satisfactory. First, it is unclear how a large number
of firms or workers end up interpreting the same sunspots in the same way. There
is an almost infinite number of sunspot variables that could be used - the daily
high temperature in Mongolia, the batting average of the New York Mets, etc.; and
each has many potential interpretations. Second and more important, there is no
direct evidence that substantial numbers of firms or workers really do condition
their economic plans on such variables.1

This paper gives a new explanation for business cycles that does not rely on
sunspots. The theory still has the property that recessions and expansions can
occur suddenly and without any obvious external cause. We begin with Howitt and
McAfee’s [18] model of sunspot-driven business cycles. We add shocks of any
size, in the form of a stochastic parameter that affects the payoff from producing.
The shocks lead to a unique equilibrium.2 There is no role for sunspots. In this
equilibrium, small shocks to a payoff-relevant variable can lead to recessions and
expansions, which take the form of large and sometimes hard-to-reverse changes in
economic activity.

The equilibrium falls into one of two categories. If the externality is small
enough, there is a unique steady-state employment level for each value of the payoff
parameter. The actual employment level, whatever it is, converges gradually to
this steady state. A small shock can cause steady-state employment to change
disproportionately, causing a recession (if the shock is negative) or expansion (if

1An example of what might qualify as direct evidence for sunspots comes from the stock market.
Some investors rely on technical buy and sell signals, which predict whether a stock will rise or
fall on the basis of its past price behavior. In Shiller’s survey following the crash of 1987 [32, p.
394], about 1/3 of investors cited being influenced by the price dropping through a 200-day moving
average or other long-term trend line, which is regarded as a sign of weakness (as indeed it was).
Froot, Scharfstein, and Stein [14] argue that the popularity of technical indicators may be due to their
role as a coordinating device. Such direct evidence for sunspots is lacking in the case of business
cycles.

2The actual path of employment depends on the realization of the exogenous shocks. Thus,
agents’ expectations are probabilistic: they consist of a probability distribution over future employ-
ment paths. The point is that this probability distribution is uniquely determined by the current state
of the economy.
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positive). However, the economy does not become “stuck”: since the steady
state level is unique, an equal and opposite shock will restore the steady-state to its
former level, and actual employment will gradually follow.

Other authors have expressed the view that the steady-state unemployment rate
changes from time to time. Blanchard and Summers write:

Most of the time, equilibrium unemployment is stable, and unaffected
by movements in the actual rate. But once in a while, a sequence of
shocks pushes the equilibrium rate up or down, where it remains until
another sequence dislodges it. Such infrequent changes appear to fit
quite well with the empirical evidence of unemployment: unemploy-
ment seems indeed to be subject to infrequent changes in its mean level.
[5, pp. 291-2]

Recent studies have found empirical support for changing mean unemployment,
using variants of Hamilton’s [16] Markov switching regression.3

If the externality is sufficiently large, there can be multiple steady-state employ-
ment levels for a range of values of the payoff parameter. The actual employment
level, whatever it is, converges gradually to the steady state whose basin of attrac-
tion it is currently in. A small shock can cause the economy’s current steady-state
to disappear. Actual employment will then drift to an adjacent steady state. Once
this occurs, an equal an opposite shock will cause the original steady state to reap-
pear. However, employment will not return to this level. This is because the
economy is now in the new steady state’s basin of attraction. Employment will re-
main in the new steady state until a sufficiently large shock causes this steady state
itself to disappear.

Why do externalities generate multiple steady states? Consider a small nega-
tive shock. Each agent in isolation now wants to produce less. This direct effect is
present with or without externalities, and can sometimes be quite large. But with-
out externalities, an agent’s incentive to produce does not depend on the aggregate
employment level. An equal and opposite positive shock will restore her original
incentives to produce: the recession will end. The economy does not get stuck.

With externalities, this is not always so. The negative shock causes a decline
in employment like before. But now there is an additional multiplier effect: with
a search externality, the decline in employment makes it harder to find buyers for
one’s goods. This further weakens an agent’s incentive to produce. This multiplier
effect can snowball: a small shock can cause a small decline in employment, which

3See Bianchi and Zoega [3], Chauvet, Juhn, and Potter [10], Clemente, Lanaspa, and Montañés
[11], and Skalim and Teräsvirta [34].
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in turn causes an even larger decline, and so on. Once this happens, an equal
and opposite positive shock may not cause a boom: agents’ incentive to produce
remains weak since employment is now much lower than before. The economy
has become mired in recession.

Pissarides [29] analyzes a dynamic model with a unique equilibrium that also
has multiple steady states. A continuum of firms decide how many workers to hire
in each period. Workers who are unemployed in one period lose skills, so they are
less productive in the next period. This creates strategic complementarities across
periods: having more jobs in one period makes firms want to create more jobs in
the next period since workers will be more productive.

Pissarides analyzes a world with no frictions: all jobs last only one period.
This guarantees that the equilibrium is unique. In the more realistic case in which
jobs end asynchronously, Pissarides’s model would have multiple equilibria. Our
model shows that adding productivity shocks solves this problem. This implies that
Pissarides’s predictions about the form of the equilibrium hold in a much richer and
more realistic dynamic setting.

This paper is related to prior research that studies how payoff shocks can elimi-
nate multiplicity of equilibria in dynamic models when there are frictions in chang-
ing actions (Burdzy, Frankel, and Pauzner [6], henceforth BFP; Frankel and Pauzner
[13], henceforth FP). This paper generalizes these results in two ways. First, BFP
and FP assume fixed frictions: each agent receives chances to switch actions at a
fixed rate. This assumption is too restrictive for the model of Howitt and McAfee
[18], where a firm can fill a vacancy faster by advertising more heavily. In this pa-
per, we let an agent switch faster, possibly at a cost. Formally, each agent chooses a
switching rate from a closed interval. In applications, the minimum switching rate
can be strictly positive; for example, job attrition in Howitt and McAfee’s model
implies that jobs become vacant at a strictly positive rate.

The second generalization concerns the shocks. BFP and FP assume that the
shocks are i.i.d. From a theoretical point of view, this leaves the impression that
the uniqueness result may be a very special case. For applied work, the assumption
is undesirable since it rules out such phenomena as mean-reversion and seasonal-
ity. By “mean reversion” we mean that a variable’s drift depends on its current
value: when the variable is high, it is more likely to fall. “Seasonality” means
that the drift or variance of the process depends on calendar time: e.g., the daily
high temperature might tend to fall and be more volatile in the autumn months.
BFP permit mean reversion and seasonality only in various limiting cases (small
shocks or small frictions), relying on the fact that taking limits makes the shocks
approximately i.i.d. FP rule out such phenomena by assumption.

We show that a unique equilibrium is obtained for a general class of mean-
reverting and seasonal shocks. We make essentially no restrictions on the degree
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of seasonality: both the drift and variance of the stochastic process can depend
arbitrarily on time. In addition, the drift can depend linearly on the current value
of the process. This generates mean reversion if the drift is a decreasing function
of the current value of the process.

We approach mean reversion in two ways. First, consider how fast the payoff
parameter drifts towards its mean value when it is at some fixed distance from this
mean. We prove uniqueness on the assumption that this rate shrinks to zero over
time: if any mean reversion dies out in the long run. This result reveals an es-
sential difference between equilibrium selection in dynamic games (BFP, FP) and
equilibrium selection in one-shot “global games” (Carlsson and van Damme [7],
henceforth CvD; Morris, Rob, and Shin [24], henceforth MRS). In global games,
each player observes a noisy signal of the game’s true payoffs and then chooses an
action. A unique equilibrium emerges in the limit as this noise becomes small. In
this limit, the noise has a "stationarity" property (in a certain sense that we explain
in section 7) that is analogous to the stationarity of the Brownian shocks. For this
reason among others, the results of BFP and FP have been viewed as directly anal-
ogous to those of CvD and MRS. Our result shows that this analogy is misleading:
while stationarity is indispensable in static global games, it can be substantially re-
laxed in the dynamic setting we study. For any degree of nonstationarity in the
static case, there are multiple equilibria if strategic complementarities are strong
enough. In contrast, our results yield a large class of nonstationary shocks (those
with finite-lived mean reversion) for which the dynamic game has a unique equi-
librium for any degree of strategic complementarities. This contrast is discussed
further in section 7.

Our uniqueness proof does not extend to the case of mean reversion that lasts
forever. For that case, we provide an algorithm for computing tight upper and
lower bounds on the set of equilibria. We have found very few cases of multiple
equilibria using this algorithm, even under strong mean reversion. This suggests
that in practical terms, multiple equilibria may not be an important phenomena even
with nonvanishing mean reversion. But they do remain a theoretical possibility.

The rest of the paper is organized as follows. We present HM’s model in section
2 and a generalization of it in section 3. Section 4 presents the uniqueness result.
Properties of the equilibrium are explored in section 5. An intuition for uniqueness
is given in section 6. Section 7 concludes. Appendix A provides a concise guide
to the notation used in this paper. An algorithm for computing the equilibrium
appears in Appendix B. Appendix C contains proofs of the paper’s theoretical
results.
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2 The Howitt-McAfee Model
HM assume a large number of identical firms that advertise to hire workers, who
quit at a fixed rate. The appeal of hiring is greater when employment is high
since it is easier to find customers during a boom. This externality gives rise to
multiple equilibria: if a boom is expected, firms will be eager to hire since they
expect selling to become easier. There are also sunspot equilibria in which changes
in some payoff-irrelevant variable give rise to expectations-driven business cycles.

HM’s model has a continuum of identical firms of measure 1. Time t is contin-
uous. Each firm has a single job that is either filled or vacant. Workers are identical
and are either employed or unemployed. Unemployed workers search costlessly
until they find a job. There is exogenous attrition: each employed worker becomes
unemployed according to a Poisson process with fixed arrival rate δ. The number
of firms equals the number of workers in the economy, so the proportion of jobs
that are filled, X , equals the employment rate (the proportion of workers who have
jobs). (Time subscripts are suppressed.)

A filled job yields a surplus f(X) > 0 which is divided between worker and
firm: the worker receives (1 − ω)f(X) and the firm gets ωf(X), where ω is a
fixed proportion between zero and one. HM assume that the surplus f is increasing
in the employment rate. This reflects the idea that marketing is less costly when
employment is high.

A firm with a vacancy chooses how intensively to advertise for workers. The
firm can vary this intensity over time. A firm that chooses the intensity θ ∈ [0, θ]
attracts job applicants according to a Poisson process with arrival rate θ. Since the
workers and firms are identical, each match results in a hire, so we can think of θ
as the hiring rate. A firm that hires at the rate θ while the employment rate is X
incurs hiring costs of cA(θ,X) per unit of time. These hiring costs are a weakly
increasing and left continuous function of the hiring rate θ. They are also weakly
increasing in the employment rate X: an increase in employment makes it harder
to attract applicants.

We introduce shocks by letting the surplus from a match depend also on a com-
mon payoff parameter, W . The surplus from a filled job is now f(W,X), where f
is strictly increasing and Lipschitz in both arguments. The surplus can be thought
of as the firm’s revenue minus all non-wage costs. Thus, changes in W may rep-
resent shocks to productivity or to the prices of nonlabor inputs such as energy.
We assume that W comes from a parametric family that is described by axiom A2
in section 3. This family includes seasonal and mean-reverting processes. To
avoid complicating the model with layoffs, we assume that the surplus can never be
negative.

The continuation payoff of a firm at time t is the expected integral of future
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profits less advertising costs, discounted at the constant rate r > 0:

Et

Z ∞

s=t

e−r(s−t)
£
ωf(Ws,Xs)φs − cA(θs,Xs)

¤
ds (1)

where φs equals one if the firm’s job is filled at time s and zero otherwise and θs is
the firm’s hiring rate at time s.

We also assume dominance regions: for extreme values of the payoff parameter,
firms’ behavior is pinned down uniquely. This assumption has two parts:

1. As the payoff parameter rises, the surplus from a match eventually rises to
the point that a firm will hire at the maximum feasible rate θ, regardless of
how it expects other firms to behave.4

2. For low enough values of the payoff parameter, firms will not hire.5

3 A General Model
We will first prove uniqueness in a more general model and then show that HM’s
model is a special case. This approach makes it easier to apply the uniqueness
result to other models, which may not have HM’s special features. It also clarifies
that the special assumptions of HM’s model can be weakened considerably. These
assumptions include the restriction that firms cannot fire workers.

The general model is as follows. There is a continuum of players of measure 1.
At any time t ∈ [0,∞), each player is locked into one of two modes, 1 or 2. Let
the proportion of players who are locked into mode 1 be Xt. In HM, the players
are firms, mode 1 (2) is a filled (vacant) position, and Xt is the employment rate.

Players change modes from time to time, according to independent Poisson
processes. The arrival rate of this process is a player’s switching rate. Let k1 (k2)
be the switching rate of a player who is locked into mode 1 (2). We assume these
switching rates are bounded above and below:

A1. Bounded Switching Rates The switching rate of a player who is in mode
m = 1, 2 comes from a fixed closed interval: km ∈

£
Km,K

m¤, where

4A sufficient condition is that for high enough values of the payoff parameter, the present value
of profits from a filled vacancy exceeds the marginal benefit of lowering the hiring rate when this
rate is at its maximum: if ω limw↑+∞ f(w,0)

r+δ+θ
> cAθ (θ, x) for all x ∈ [0, 1].

5A sufficient condition is that productivity is negative for low enough values of the stochastic
parameter: limw↓−∞ f(w, 1) < 0.
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0 ≤ Km ≤ K
m ≤ ∞. In particular, no player can choose a switching rate

above K = max
n
K
1
,K

2
o

.

If a player who is locked into mode m = 1, 2 chooses the switching rate km during
the infinitesimal period [t, t + dt], she incurs a cost of cm(km, Xt)dt and switches
modes with probability kmdt. We assume only that cm is Lipschitz in Xt and
weakly increasing and left-continuous in km.6

In HM, a firm with a vacant position chooses the switching rate θ (its hiring
rate) and its switching cost function is cA(θ,X). A firm with a filled job "chooses"
the switching rate δ (its attrition rate)7 and its cost function is identically zero.

In this framework, a player chooses the rate at which switching opportunities
arrive. When one arrives, she must take it. In the earlier models of BFP and FP,
a player costlessly receives switching opportunities at some fixed rate d. She does
not have to switch. Nevertheless, the switching mechanism of BFP and FP can be
captured in the current model by constraining k1 and k2 to be in [0, d] and letting
c1 and c2 be identically zero in this range. Switching with probability p when an
opportunity arises in BFP and FP is equivalent to choosing a switching rate of pd in
our model.

In addition to paying switching costs, a player may also receive a flow of payoffs
from being in a given mode. In HM, this equals a firm’s profits if its position
is filled and is zero otherwise. We write this direct payoff flow as u(m,W,X),
where m = 1, 2 is the player’s current mode, X is the current proportion of mode-1
players, and W is current value of the stochastic payoff parameter.

A player’s time-t continuation payoff is the present discounted value of her
direct payoff flow minus her switching costs:

E

∞Z
v=t

e−r(v−t) [u(mv,Wv,Xv)− cmv(kv,Xv)] dv (2)

where mv ∈ {1, 2} is the mode the player is in at time v, kv is her switching rate,
and r > 0 is the common pure rate of time preference.

We now discuss our assumptions on W . For tractability we assume it has
continuous paths. Consider the increment Wt+dt−Wt: the change in the stochastic

6Without left continuity an optimum might not exist. Suppose, e.g., that the cost is zero for
switching rates below k0 and c0 > 0 for rates k0 and above. If the benefit of switching is only c0/2,
the agent has no optimal switching rate: any rate below k0 is too low while any rate greater than or
equal to k0 is too high.

7This is captured by setting the upper and lower bounds on her switching rate both equal to δ.
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parameter from time t to time t + dt. In the general case of an Ito diffusion, this
increment is normal with mean µ(t,Wt)dt (the drift) and variance σ2(t,Wt)dt. FP
assume that Wt follows a Brownian motion: that µ() and σ2() are both constants.
This rules out any sort of mean-reversion or seasonality. BFP permit the drift to
depend on t and Wt; however, they prove uniqueness only in various limiting cases
in which the drift becomes negligible. In this paper we will prove uniqueness
without taking limits.

We permit both the drift and variance to vary seasonally in an arbitrary way. The
drift can also be a linear function of the state Wt; this can capture mean reversion.8
Formally:

dWt = (νtWt + µt) dt+ σtdBt (3)

where B is a Brownian motion with zero drift and unit variance. If νt < 0, for
example, W is mean-reverting.

A2. Payoff Shocks: General Case The drift inW is a (possibly time-varying) lin-
ear function of the state:

µ(t,Wt) = νtWt + µt (4)

where νt, µt ∈ < are deterministic functions of time. The variance of W can
change over time but it is independent of the state:

σ2(t,Wt) = σ2t (5)

where σ2t ∈ <+ is a deterministic function of time. Moreover, there are
constants 0 < N1 < N2 such that, for all t:

1. The drift terms are bounded:

|νt| , |µt| < N2 (6)

2. Any mean reversion dies out asymptotically:Z ∞

s=0

|νs| ds < N2 (7)

3. The variance is nonzero and bounded:

σt ∈ [N1, N2] (8)

8For technical reasons, our approach does not admit more general forms of state dependence.
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4. Changes in variance are Lipschitz:

|σt0 − σt| ≤ N2 |t0 − t| (9)

Of the assumed bounds (6)-(9), the most restrictive is (7). It implies that any
mean reversion must eventually die out (limt→∞ νt = 0). On the other hand, there
can be arbitrarily strong mean reversion for an arbitrarily long initial period.

We will also discuss the effects of replacing A2 with the stronger A20, which
states that W is a Brownian motion:

A20. Payoff Shocks: Brownian Case W is a Brownian motion with drift µ and
variance σ2: µ(t,Wt) = µ and σ2(t,Wt) = σ2.

This assumption makes the environment stationary. We will show that under A20,
the equilibrium is also stationary.

Define the relative payoff flow in mode 1 to be the difference in the payoff flows
(the integrand in (2)) in mode 1 versus mode 2:

D(W,X, k1, k2) =
£
u(1,W,X)− c1(k1,X)

¤
−
£
u(2,W,X)− c2(k2,X)

¤
(10)

The relative payoff flow in mode 1 is assumed Lipschitz in W and X: there are
constants α and β such that for all w, w0, x, x0, k1, and k2,

D(w, x, k1, k2)−D(w, x0, k1, k2) ≤ β |x− x0| (11)
D(w, x, k1, k2)−D(w0, x, k1, k2) ≤ α |w − w0| (12)

Assumption A3 states that there are strategic complementarities.

A3. Strategic Complementarities The relative payoff flow in mode 1 is weakly
increasing in the proportion of agents who are in mode 1: for all x > x0 and
any feasible k1 and k2,

D(w, x, k1, k2)−D(w, x0, k1, k2) ≥ 0 (13)

Assumption A4 states that a positive shock weakly raises the relative payoff
flow in mode 1, and strictly raises it over some interval.

A4. Payoff Monotonicity The relative payoff flow in mode 1 is weakly increasing
in the payoff parameter: for all x, w > w0, and any feasible k1 and k2,

D(w, x, k1, k2)−D(w0, x, k1, k2) ≥ 0 (14)

Moreover, there is a nonempty interval (w1, w2) such that the inequality holds
strictly if w and w0 both lie in this interval.
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We assume dominance regions: for extreme values of the payoff parameter,
players have a strictly dominant switching rate.

A5. Dominance Regions There are constants w > w such that:

1. if Wt > w, it is strictly dominant for players in mode 1 (2) to switch at
their minimum (maximum) switching rate.

2. if Wt < w, it is strictly dominant for players in mode 1 (2) to switch at
their maximum (minimum) switching rate.

We also assume that the marginal cost of raising one’s switching rate depends
in a bounded way on the current population distribution:

A6. Bounded Effect of X on Marginal Cost There is a constant η > 0 such that
for all x, x0, k, k0 and for each mode m = 1, 2,

|cm(k0, x0)− cm(k0, x)− (cm(k, x0)− cm(k, x))| ≤ η |k − k0| |x− x0| (15)

Axiom A6 implies that the derivative of the marginal switching cost with respect to
the proportion in mode 1, if it exists, is bounded: ∂cmk /∂x ≤ η.

A player’s information set at time t comprises the public history (Wv,Xv)v∈[0,t)
and her private history (the actions she has played and the switching rates she has
selected through time t). A (possibly mixed) strategy for a player specifies, at any
information set, the distribution of switching rates that she will choose. While we
allow players to randomize, in equilibrium they generally do not do so.

4 Theoretical Results

4.1 General Model
Rather than looking for equilibria, we use a more primitive solution concept: the
iterative deletion of conditionally dominated strategies (Fudenberg and Tirole [15]).
This is an extension of backwards induction to infinite horizon games. At each iter-
ation, we delete all strategies that prescribe playing a strictly dominated action after
any history. The process is iterated until no further strategies can be eliminated.

Theorem 1 states that there is a unique outcome that survives the iterative pro-
cedure. BFP show that in dynamic models with players who are infinitesimal and
anonymous, every Nash equilibrium outcome survives this procedure. Thus, The-
orem 1 also implies that the model has a unique Nash equilibrium outcome.

10

Advances in Theoretical Economics , Vol. 5 [2005], Iss. 1, Art. 2

Brought to you by | Iowa State University
Authenticated | 129.186.1.55

Download Date | 9/19/12 5:26 PM



THEOREM 1 (Uniqueness) The model of section 3 has a unique outcome that
survives the iterative deletion of conditionally dominated strategies: for any initial
state (W0,X0) and almost any path of W , the path of X is uniquely determined.

Proof: Appendix C.

Theorem 2 states that the probability distribution over what will happen depends
only on the current state and time.

THEOREM 2 (The Markov Property) The distribution of future paths of the state,
(W,X), depends only on the current state and time. Under axiom A20, this distri-
bution is independent of time.

Proof: Appendix C.

By the Markov Property, the distribution of future paths of X depends only on
the current state and time. But a player’s continuation payoff in a given mode
depends only on the future paths of X and W . Hence, this continuation payoff
is uniquely determined by the current state and time. Theorem 3 also says that
small changes in the current state or time lead to small changes in this continuation
payoff.

THEOREM 3 (Payoff Continuity) Let V 1
t = V 1(W,X, t) and V 2

t = V 2(W,X, t)
be the continuation payoffs of a player locked into mode 1 and 2, respectively, at
state (W,X) and time t. These are continuous functions of the state and time.
Under axiom A20, they are independent of time.

Proof: Appendix C.

We call V 1−V 2 the relative value of being in mode 1. Theorem 4 states that the
relative value of being in mode 1 is weakly increasing in the proportion of players
in mode 1 and in the payoff parameter. It also gives a formula for this relative
value: it equals the expected integral of the discounted relative payoff flow in mode
1. The discount rate in this integral is the sum of the rate of time preference and
the two switching rates. The reason the switching rates are added is that being in
mode 1 rather than mode 2 at time t has an effect on a player’s payoff flow until
the first time at which either (a) she moves to mode 2 (which occurs at the rate k1)
or (b) if she were in mode 2, she would have moved to mode 1 (which would have
occurred at the rate k2). The hazard rate for one or the other of these events to
occur is just the sum of the two events’ hazard rates, k1 + k2, since the probability
of their occurring simultaneously in continuous time is zero.
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THEOREM 4 (Relative Payoff Monotonicity) The relative value of being in mode
1, V 1 − V 2, equals the expected integral of the discounted relative payoff flow in
mode 1:

V 1
t − V 2

t = E

⎡⎣ ∞Z
v=t

exp

µ
−

vR
s=t

£
r + k1s + k2s

¤
ds

¶
D(Wv, Xv, k

1
v , k

2
v)dv

⎤⎦
This relative value is increasing in the current payoff parameter, Wt, at a rate that
is bounded below by a strictly positive constant. It is also weakly increasing in Xt

(strictly if the relative payoff flow in mode 1 is strictly increasing in X).

Proof: Appendix C.

Theorem 5 gives a formula for the switching rates in terms of the relative value
of being in mode 1 and the switching cost functions. If these functions are differ-
entiable, it implies that a player chooses a switching rate at which the marginal cost
of switching faster equals the marginal benefit, which is the relative value of being
in the other mode.

THEOREM 5 (Switching Rate Rule) Agents locked into mode 1 choose a switch-
ing rate k that maximizes k · (V 2

t − V 1
t ) − c1(k,Xt). Agents locked into mode 2

choose a switching rate k that maximizes k · (V 1
t − V 2

t )− c2(k,Xt).

Proof: Appendix C.

Payoff Continuity and the Switching Rate Rule together imply that the rate of
change of the proportion of players in mode 1 is almost always uniquely determined
by the current state and time. Why? There are 1−X players in mode 2, who enter
mode 1 at the common rate k2, and X players in mode 1, who leave mode 1 at the
common rate k1. Thus:

Ẋ = k2 · (1−X)− k1 ·X (16)

In addition, Payoff Continuity implies that the relative value of being in mode 1
depends uniquely on the current state and time. By Switching Rate Rule, a player’s
optimal choice of switching rate depends only on the relative value of being in mode
1 and the population distributionX . This rule almost always gives a unique optimal
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switching rate for agents in each mode.9 Together, these imply that at any time t,
the switching rates (and thus Ẋ) are uniquely determined at all but a measure-zero
set of states.

By Relative Payoff Monotonicity, an increase in the payoff parameter, holding
the proportion of agents in mode 1 fixed, raises the relative value of being in mode
1. By the Switching Rate Rule, this implies Theorem 6: an increase in the payoff
parameter leads to a weak increase (decrease) in the switching rate of players in
mode 2 (1). "Weak" is essential: agents may prefer not to change their switching
rates if they are at a corner solution or at a kink of their switching cost function.

THEOREM 6 (Switching Rate Monotonicity) An increase in the payoff parame-
ter leads to a weakly higher switching rate of agents who are locked into mode 2
and a weakly lower switching rate of agents who are locked into mode 1, holding
time and the proportion of agents in mode 1 fixed. More precisely, if w0 > w, then
any switching rate that is optimal for mode-1 (mode-2) agents at state (w, x) at
time t is weakly higher (weakly lower) than any switching rate that is optimal for
mode-1 (mode-2) agents at state (w0, x) at time t.

Proof: Appendix C.

Referring to equation (16), this implies Theorem 7: an increase in the payoff
parameter weakly raises the rate of growth of the proportion of players in mode 1.

THEOREM 7 (Growth Rate Monotonicity) An increase in the payoff parameter
leads to a weakly higher rate of change Ẋ of the proportion of players locked into
mode 1, holding time and the proportion of agents in mode 1 fixed. More precisely,
if w0 > w, then any rate of increase of X that can occur in equilibrium at state
(w, x) at time t is weakly lower than any rate of increase of X that can occur in
equilibrium at state (w0, x) at time t.

Proof: Appendix C.

9There may exist a set of states of measure zero at which agents are indifferent between two
or more switching rates. For example, if the marginal cost of switching faster is a constant (e.g.,
cm(k,X) = ck), then when the relative value of being in the other mode equals this constant, an
agent will not care which switching rate she chooses. But the relative value of being in mode 1 is
strictly increasing in the payoff parameter by Relative Payoff Monotonicity. Hence, the set of states
at which this relative value equals a given constant has measure zero. This holds for any switching
cost functions: the set of states at which agents are indifferent between multiple switching rates (and
thus where Ẋ can take multiple values) always has measure zero. Thus, this sort of indeterminacy
has no effect on the evolution of X or on players’ payoffs.
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In contrast, agents’ switching rates may not be monotonic in X. Although an
increase in X raises the relative payoff flow in mode 1, it can also make it more
costly to switch into mode 1.

A key question is how the equilibrium behaves dynamically. We will simplify
these dynamics by studying the properties of the contour lines. The contour line
corresponding to any real number C is simply the set of states at which Ẋ = C. A
particularly important case is Ẋ = 0: the boundary between the regions where X
is rising and falling. We study this contour line and its implications in section 5.

X falls at its maximum rate if all agents are in mode 1 and they leave at the
maximum possible rate, K1. In this case, Ẋ = −K1. Similarly, X rises at its
maximum rate if all agents are in mode 2 and they move to mode 1 at the maximum
rate, K2. In this case, Ẋ = K

2. Thus, the rate of change of X must lie in the
interval

h
−K1

, K
2
i
. Let C be any fixed real number in this interval. For any

such C, Theorem 8 states that there is a certain nonempty interval of values of X
in which X can rise at the rate C.10 For all X below this interval, X must rise at a
higher rate; for all X above the interval, X must rise at a lower rate. This interval
is independent of W and time. Note that the theorem is not a statement about the
equilibrium, but only about what is feasible given the constraints on switching rates
in axiom A1.

THEOREM 8 Fix a real number C ∈
h
−K1

,K
2
i
. The constraints on the switch-

ing rates (A1) imply that it is feasible for X to rise at the rate C if and only if X
lies in the closed interval [X,X] ∩ [0, 1], where

X =
K2 − C

K2 +K
1 and X =

K
2 − C

K
2
+K1

(17)

A1 also implies the following:

1. Ẋ < C if X > X;

2. Ẋ > C if X < X;

3. X ≤ X, with equality only if K1 = K
1 and K2 = K

2.

4. X ≤ 1 and X ≥ 0.

10Note that C can be negative, in which case X "rises" at a negative rate (i.e., it falls).
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Proof: Appendix C.

We now consider the set of states (W,X) for which X lies strictly between X
and X. Theorem 9 states that this set can be divided into three regions that vary
according to how fast X grows (or shrinks) in equilibrium: a leftmost region where
Ẋ < C; a middle region (which may be empty) where Ẋ = C; and a rightmost
region where Ẋ > C.

THEOREM 9 Fix a real number C ∈
³
−K1

,K
2
´

and a time t.11 Consider the
set of states (W,X) for which X ∈ [0, 1] lies strictly between X and X.12 In this
region, let the lower Isorate curve be the left boundary of the set of states at which,
in equilibrium at time t, X rises at a rate of C or higher. Let the upper Isorate
curve be the right boundary of the set of states where, in equilibrium at time t, X
rises at a rate of C or lower. The following properties hold:

1. The lower Isorate curve lies weakly to the left of the upper Isorate curve.

2. To the left of the lower Isorate curve, Ẋ < C.

3. Between the two curves (if they do not coincide), Ẋ = C.

4. To the right of the upper Isorate curve, Ẋ > C.

Proof: Appendix C.

Theorem 10 states that the boundaries between the three regions—the Isorate
curves—are continuous functions from X to W . These functions may also depend
on time: the Isorate curves may shift, though they cannot jump discontinuously. If
W follows a Brownian motion, the Isorate curves are constant over time.

THEOREM 10 Fix a real number C ∈
³
−K1

,K
2
´

. Both Isorate curves corre-
sponding to C are continuous functions from (X, t) to W . If the payoff parameter
follows a Brownian motion (axiom A20), they are independent of t: the Isorate
curves do not move.

11If C = −K1 (respectively, if C = K
2) one can verify that X = 1 (respectively, X = 0). In

both cases, there clearly is no X ∈ [0, 1] that lies in
¡
X,X

¢
.

12If the set is empty (if X = X), then Theorems 9-11 are vacuous. By Theorem 8, this holds only
if agents never have any choice about switching rates—if the upper and lower bounds on switching
rates coincide.

15

Frankel and Burdzy: Shocks and Business Cycles

Brought to you by | Iowa State University
Authenticated | 129.186.1.55

Download Date | 9/19/12 5:26 PM



Proof: Appendix C.

Theorem 11 gives sufficient conditions for the upper and lower Isorate curves
to coincide. By Theorem 9, the region where Ẋ equals C has measure zero in this
case. Condition 1 states that the Isorate curves coincide if the rate of increase, C,
and the minimum switching rates are not all zero. If these three quantities are all
zero, condition 2 states that the Isorate curves still coincide if, in both modes, the
marginal cost of raising the switching rate is zero when the switching rate is zero.

THEOREM 11 Fix a real number C ∈
³
−K1

,K
2
´

. The upper and lower Iso-
rate curves corresponding to C must coincide if at least one of the following two
conditions holds:

1. C, K1, and K2 are not all zero, or

2. C = K1 = K2 = 0 and for both modes m, all proportions x of players in
mode 1, and any positive quantity ε, there is a feasible switching rate k > 0
such that the cost of raising the switching rate from zero to k, divided by the
increase k, is less than ε: cm(k,x)−cm(0,x)

k
< ε.

Proof: Appendix C.

Suppose conditions 1 and 2 fail: C = K1 = K2 = 0 and, in at least one of
the modes, the marginal switching cost is strictly positive when the switching rate
is zero. Consider the region where, for players in this mode, the relative value of
being in the other mode is positive but is less than this marginal switching cost.
Throughout this region, players in both modes will choose switching rates of zero,
so X will not change. Since the relative value of being in one mode vs. the other is
a continuous function of the state, this region has positive area. Hence, the Isorate
curves for C = 0 (which enclose this region) must be distinct.

Figures 1 and 2 display two computed examples. By Theorem 11, the Isorate
curves can be distinct only if C = K1 = K2 = 0, in which case

£
X,X

¤
equals

the unit interval by (17). Figure 1 illustrates an example in which this is the case.
The parameters are σ = 0.2, r = 0.1, u(1, w, x) − u(2, w, x) = 0.5 (w + 2x− 1),
c1(k, x) = c2(k, x) = k, K1 = K2 = 0, and K

1
= K

2
= 1. The marginal

cost of switching faster is constant, so an agent will either switch at her maximum
rate of one or stay in her current mode. Since the minimum switching rates are
zero, Ẋ can feasibly equal zero anywhere in the state space:

£
X,X

¤
equals the unit

interval. There are three regions in equilibrium. In the leftmost region, the relative
value of being in mode 2 exceeds the marginal cost of switching faster, so agents
in mode 1 switch at their maximum rate while agents in mode 2 remain in mode 2.
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Figure 1:

Hence, X falls. The analogous is true in the rightmost region, where X rises. In
the intermediate region, the payoff from switching is less than the marginal cost of
switching faster, so all agents remain in their current modes: Ẋ = 0.

Figure 2 shows another example. The parameters are the same as in Figure 1,
except that the minimum switching rates, K1 and K2, now equal 0.05 instead of
zero. This guarantees that X must rise (fall) if it is close enough to zero (one) since
then nearly all agents are in mode 2 (1) and they must leave at a strictly positive
rate. Hence we draw two horizontal dashed lines, one at X = 0.05 (below which
X must rise) and the other at X = 0.95 (above which X must fall). Between these
lines, Ẋ can feasibly equal zero. This area divides into just two regions. They
are separated by the upper and lower Isorate curves, which coincide as Theorem 11
predicts. X falls in the left region and rises in the right one.

The Isorate curves in Figure 2 look quite different from those in Figure 1. Yet
the change in parameters is slight: the minimum switching rates are now small
and positive rather than zero. To understand why this makes a big difference,
suppose we start with Figure 1 and then raise the minimum switching rate in both
modes to some small κ > 0. Since the change is small, the benefit of changing
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Figure 2:

modes is about the same. Thus, agents are still switching at their minimum rate at
nearly all states in the region between the two Isorate curves in Figure 1. However,
this minimum rate is now κ rather than zero. This means that Ẋ , which equals
κ(1−X)−κX = κ(1−2X), is now negative (positive) if X exceeds (is less than)
one half. The region between the Isorate curves now divides into two; the part in
which X exceeds (is less than) one half joins the region where X is falling (rising).
There are now only two regions, separated by a single boundary. This explains the
difference between the two figures.

4.2 Howitt-McAfee Model
HM show that their model has multiple equilibria in the absence of productivity
shocks. Theorem 12 shows that HM’s model with shocks is a special case of our
general model. Thus, it has a unique equilibrium outcome.

THEOREM 12 HM’s model with shocks (section 2) is a special case of the general
model of section 3, if one makes the following assocations:
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1. the players in the general model correspond to the firms in HM;

2. mode 1 corresponds to a filled job;

3. mode 2 corresponds to an unfilled job;

4. the utility flow in mode 1 corresponds to the profit flow from a filled job,
ωf(Wt,Xt);

5. the utility flow in mode 2 corresponds to the profit flow from an unfilled job,
which is zero;

6. The switching rate in mode 1 corresponds to the attrition rate, with lower and
upper bounds both equal to the constant δ;

7. The switching rate in mode 2 corresponds to the hiring rate θ, with a lower
bound of zero and an upper bound of θ;

8. switching costs in mode 2 correspond to hiring costs, cA(θt,Xt);

9. switching costs in mode 1 correspond to attrition costs, which are zero.

Proof: Appendix C.

Theorems 2-11 imply that the unique outcome has the following properties.
The Markov Property implies that the distribution of paths of future employment
depends only on the current state and time. If the payoff parameter follows a
Brownian motion, this distribution is independent of time. Let V F

t (V U
t ) be the

continuation payoff of a firm with a filled (vacant) position at time t, as given by
equation (1). By Payoff Continuity, these are continuous functions of the current
state and time; with Brownian motion, they are independent of time.

Relative Payoff Monotonicity states that the relative value of a filled position,
V F
t − V U

t , equals the expected integral of the firm’s discounted production profits,
plus the search costs it would have incurred if the position were vacant:

V F
t − V U

t = E

⎡⎣ ∞Z
v=t

exp

µ
−

vR
s=t

[r + δ + θs] ds

¶µ
ωf(Wv,Xv)
+cA(θv,Xv)

¶
dv

⎤⎦ (18)

where θs is the (common) hiring rate of firms with vacancies at time s. This relative
value is strictly increasing in the current payoff parameter and employment rate.

The Switching Rate Rule implies that firms with vacancies at a given state
choose the common hiring rate at which the marginal cost of raising the hiring rate,
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cAθ , equals the marginal benefit, V F − V U . From Switching Rate Monotonicity we
see that that an increase in the payoff parameter leads to a weakly higher hiring rate,
controlling for the employment rate and time. By Growth Rate Monotonicity, an
increase in the payoff parameter weakly raises the rate of change of the employment
rate, which by (16) is

Ẋ = θ(1−X)− δX (19)

If the economy is currently in steady state, the employment rate is neither grow-
ing nor shrinking. Hence, by Growth Rate Monotonicity, a positive shock cannot
lead the employment rate to fall. Likewise, a negative shock cannot cause it to rise.
An important implication of this is that recessions can result only from negative
shocks and booms from positive ones. This is typically not the case in models with
multiple equilibria.

There is positive attrition in HM’s model, so condition 1 of Theorem 11 holds:
the Isorate curves for any C coincide. Hence, the regions of rising and falling
employment are separated by a curve that is a continuous function from X to W .
By Theorem 10, if the payoff parameter follows a Brownian motion, then this curve
does not shift over time.

5 Equilibrium Dynamics
We will discuss dynamics in the context of HM’s model; this discussion also applies
to the general model when the Isorate curves corresponding to Ẋ = 0 coincide (see
Theorem 11). For simplicity, we also assume that the payoff parameter follows a
Brownian motion. This implies that the Isorate curve does not shift over time.

By Theorems 8-11, the regions of rising and falling employment are separated
by a curve (the Isorate Curve corresponding to Ẋ = 0) that is a continuous function
from X to W . A computed example appears in Figure 3; the algorithm is set out in
Appendix B. Arrows indicate the dynamics of the employment rate. To the right
of the curve, employment is rising; to the left and above the curve, it is falling.

A steady state is a state (w, x) at which the local dynamics of X are stable. This
means that Ẋ is negative at states slightly above (w, x) and positive at states slightly
below (w, x). The steady states in Figure 3 are shown in bold. They consist of the
upwards sloping portion of the Isorate Curve, together with the indicated part of the
lower horizontal axis.

The unstable, downward sloping part of the Isorate Curve is shown in dashes.
For values of the payoff parameter that correspond to this part of the curve, there
are multiple steady states. Suppose the employment rate begins at the higher level
and there is a sequence of negative shocks to W . When W reaches about -0.3,
the upwards sloping segment of the Isorate Curve folds back on itself. At this
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Figure 3:

threshold, an arbitrarily small negative shock to W causes the high steady state to
disappear. Since the only remaining steady state is the low one, employment will
gradually fall to this new, lower level. A small shock suffices to cause a recession.

Once this happens, an equal and opposite shock to W will cause the high-
employment steady state to reappear. However, the low steady state is also dy-
namically stable. Thus, the economy will remain in recession until a sufficiently
large shock to W causes the low steady state itself to disappear. With multiple
steady states, small shocks can have cumulatively large and hard-to-reverse effects
on the employment rate.13

We will see in section 5.2 that small shocks can have large effects also with a
unique steady state. However, in this case the economy does not get stuck: an
equal and opposite shock will always restore the steady state to its initial level.

We have assumed that the payoff parameter follows a Brownian motion. This
simplifies the exposition since, with a stationary environment, the Isorate Curve is
constant over time. With seasonal and mean-reverting shocks, the environment

13This is an example of a cusp catastrophe (see Zeeman [35]).
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players face at any given state (W,X) changes over time. Hence, their optimal
behavior may also change. This yields an Isorate Curve that can fluctuate over
time as the environment changes. However, Figure 3 still accurately describes the
dynamics of employment at any given time. Employment still rises to the right
of the current Isorate Curve (wherever it is) and falls to the left. In addition, our
discussion of the system’s dynamics remains accurate as long as the shifts in the
Isorate curve occur sufficiently slowly, relative to changes in the employment rate.

5.1 When are there Multiple Steady States?
There are multiple steady states in regions where the Isorate Curve has downward
sloping segments. The Isorate Curve is upward (downward) sloping if an increase
in employment, holding the payoff parameter fixed, lowers (raises) the employment
growth rate. To see why, suppose we are initially at (W,X) = (w, x) and consider
what happens if there is a one-shot increase of dx in the employment rate. If this
increase lowers employment growth below zero, then by Growth Rate Monotonicity
the payoff parameter must rise in order to restore it to zero: the Isorate Curve must
be upward sloping. On the other hand, if the increase in the employment rate
raises the employment growth rate above zero, a decrease in the payoff parameter
is needed to return growth to zero: the Isorate Curve is downward sloping.

We thus need to determine how an increase in employment affects the employ-
ment growth rate. In HM’s model, this is the sum of three effects. The first is the
change in employment growth that results if employment rises holding firm behav-
ior (hiring rates) constant. This effect on employment growth is negative. By (19),
the decline in the employment growth rate in HM is exactly−(δ+ θ)dx: the larger
is the sum of the attrition and hiring rates, the more negative is the first effect. This
is because there are dx fewer firms with vacancies, who are hiring at the rate θ, and
dx more firms with filled jobs, whose workers are leaving at the rate δ.

The second effect comes from changes in agents’ behavior. Because there are
strategic complementarities in production, the increase in employment raises the
incentive to produce. This second effect tends to raise the employment growth rate
by raising the hiring rate in HM.

There may also be a third effect. If an increase in employment alters hiring
costs, this can affect a firm’s incentive to fill a vacancy. For example, there may
be congestion: marginal hiring costs may be higher when the vacancy rate is low,
since fewer workers are searching for jobs. HM assume this.14 With congestion, an

14One might also argue for anticongestion: it may be easier to hire when employment is high
since there is less competition from other firms. With anticongestion, the third effect of an increase
in employment on employment growth is positive. On the other hand, anticongestion may weaken
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increase in employment tends to lower employment growth by lowing hiring rates.
But there can also be a reverse effect: an anticipated increase in employment may
raise the incentive to hire now, before hiring costs rise. Via this effect, an increase in
employment can raise employment growth. Hence, the overall effect of congestion
on the shape of the Isorate Curve is ambiguous.

To conclude, the effect of the increase in employment on employment growth
is the sum of the negative effect when agents’ behavior is held constant and the
positive effect via strategic complementarities. There is also a congestion effect of
ambiguous sign. If the sum of these effects is positive, the payoff parameter must
fall to restore employment growth to zero: the Isorate Curve is downward sloping.
If the sum is negative, the Isorate Curve is upward sloping. In HM, for instance, the
more rapid is job attrition, the stronger the production spillovers must be in order
for the equilibrium to have multiple steady states.

5.2 Comparative Statics
In this section we use simulations to study the effects of strategic complementarities
and congestion on the shape of the curve that separates the regions of rising and
falling employment in HM’s model. We also depict the case analyzed by HM, in
which shocks are absent. Figures 4-7 depict four cases that differ in the presence
or absence of strategic complementarities and congestion in hiring. They illustrate
that even when the steady state employment level is always unique, there are regions
where small shocks can have disproportionately large effects on this steady state.

We contrast the surplus functions f =W+X (strategic complementarities) and
f =W +0.5 (no complementarities).15 Firms keep half the surplus. We also con-
trast hiring cost functions cA = θ2

1−X (congestion) and cA = θ2 (no congestion). To
simplify the exposition, we assume W follows a Brownian motion. The Brownian
motion has zero drift and variance σ2 = 0.04. The maximum advertising rate is
θ = 1 and the attrition rate is δ = 0.02. The discount rate is r = 0.1. The Isorate
curves coincide in this case by Theorem 11.

Figure 4 depicts the case in which there are both complementarities and conges-
tion. This is the case studied by HM. The two dashed curves and the narrow line

strategic complementarities: if other firms hire, a given firm’s incentive to hire is weakened since
it will become less costly to hire later. Since this weakens the second effect, the net effect of
anticongestion on the shape of the Isorate Curve is ambiguous. This assumes that any anticongestion
is weak enough that the critical assumption of Strategic Complementarities (A3) still holds; if A3 is
violated, our results do not apply.

15The constant 0.5 just ensures that the Isorate curves appear in about the same place in the two
cases. It does not affect the shape of the curves.
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Complementarities and No Congestion
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marked with dots pertain to a world without shocks, in which W is constant. The
two dashed curves divide the state space into three regions. In the leftmost region,
employment must be falling in any equilibrium without shocks. In the rightmost
region, it must be rising without shocks. In the region between the dashed curves,
employment can either rise or fall, depending on agents’ expectations. The narrow
line marked with small dots is the set of steady states in a world without shocks:
the states at which, if firms expect employment to remain at its current level forever,
they will choose hiring and layoff rates that keep employment constant.

The solid curve pertains to a world with shocks, where the equilibrium is unique.
To the right of this curve, employment is rising; to the left, it is falling. There is
a negligible region of multiple steady states in this case. The effects of attrition
and congestion, which make the curve upwards sloping, offset the strategic com-
plementarities, which tend to make the curve slope down.

This is not the case in Figure 5, which depicts the case in which there are com-
plementarities in the production function but no congestion in hiring. The curves
have the same interpretation in this figure. The solid curve has a downwards slop-
ing segment: there are multiple steady states.

Figure 6 corresponds to the case in which there is congestion in hiring but no
complementarities in production. Here the solid curve is upwards sloping: the
steady state employment level is unambiguously unique for each value of the pay-
off parameter. In Figure 6, the boundaries of the region of multiplicity without
shocks (the two dashed curves) coincide since there is a unique equilibrium without
shocks. This is also so in Figure 7, which depicts the case in which there are nei-
ther complementarities in production nor congestion in hiring. The black curve in
Figure 7 is upwards sloping, so the steady state employment level is always unique.
However, it is much steeper than in Figure 6 since there is no congestion. Near the
steep segment, a small shock to the payoff parameter has a large effect on the steady
state employment level. But since the steady state is unique, this large effect can
be undone by an equal and opposite shock. This contrasts with the case of multiple
steady states.

Figure 8 illustrates how the equilibrium changes as the strategic complementar-
ities in production become stronger. The figure depicts the Isorate curve for Ẋ = 0
in the stochastic case for a range of parameters: f(w, x) = w + ax − a/2 where
a = 0, 2, 4, 8, and 16. This captures strategic complementarities that range from
nonexistent (a = 0) to relatively strong (a = 16). The rest of the parameters are
as in Figures 4-7 for the congestion case (cA = θ2

1−X ). With no complementarities
(a = 0), there is a unique steady state for every value of the payoff parameter. With
positive but relatively weak complementarities (a = 2), there is a small area of
multiple steady states. As the complementarities grow, this region expands.
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Figure 8:

6 Intuition
This section presents a detailed intuition for the uniqueness result. We focus on
HM’s model; the intuition for the general model is analogous. We begin with
the case of Brownian shocks (axiom A20); section 6.1 explains what changes with
seasonal and mean-reverting shocks.

The game has strategic complementarities: firms hire more intensively if other
firms are expected to do so since the resulting increase in employment makes it
easier to market one’s products. By a result in Milgrom and Roberts [22], the hiring
rates chosen by firms in any equilibrium are bounded above and below by strategy
profiles (S and S, respectively) that are also equilibria of the model. Moreover,
these equilibria are monotonic: an increase in the payoff parameter or employment
rate, ceteris paribus, leads firms to choose a weakly higher hiring rate.

Our task is to explain why these strategy profiles must coincide. They are
depicted in Figure 9. Since we have only two dimensions, we (a) assume the
strategies are independent of time t and (b) depict the relationship between the
payoff parameter W and the hiring rate θ for some fixed employment rate X. In
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any equilibrium, firms choose hiring rates no lower than those prescribed by S and
no higher than those given by S.

0=θ  

θθ =  S  S  

tW  

Figure 9:

Since there are dominance regions, the strategy S must prescribe hiring at the
minimum rate of zero for low enough values of the payoff parameter. Thus, there
is a translation eS of S that lies entirely to the left of S and touches S at some w∗

(Figure 10). Let ∆ be the horizontal distance between eS and S.16

∆+*w*w

S~

0=θ  

θθ =  
S  S  

tW  

∆

Figure 10:

Since the two curves touch at w∗, we know that17

S (w∗) = S (w∗ +∆) . (20)

16 eS is a translation of the entire strategy, not just the part depicted in the figures. That is, the
hiring rate prescribed by eS when the employment rate is Xt and the state is Wt is set equal to the
hiring rate prescribed by S when the employment rate is Xt and the state is Wt +∆, for any Xt.

17We suppress the dependence of the strategies on time and Xt for expositional clarity.
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Let θ∗ be the optimal hiring rate of a firm when the payoff parameter is w∗, if the
firm believes that all other firms will use the strategy eS. Since eS is everywhere
above S, a firm expects to see higher employment rates in the future if it believes
that all other firms will use the strategy eS than if it expects them to use S. Thus,
since there are strategic complementarities,

θ∗ ≥ S (w∗) . (21)

We will now show that θ∗ must be strictly less than S (w∗ +∆) unless eS and
S coincide. Since this inequality would contradict (20) and (21), the two curves
must indeed coincide. As S lies entirely between them, it must also coincide with
S; this will show that the equilibrium is unique.

Consider two firms: firm i is at state (w∗, x) and expects other firms to use
strategy eS; firm j finds itself at state (w∗+∆, x) and expects S to be used. Since the
payoff parameter follows a Brownian motion, which has stationary and independent
increments, the changes in the payoff parameter must have the same distribution at
the two points. Thus, since one strategy is an exact translation of the other, agents i
and j must also expect the same joint distribution of changes in the state, (W,X).18

The only difference is that j expects a payoff parameter that is always ∆ less than
the payoff parameter that i expects. Since the profit flow from a filled position is
increasing in the payoff parameter, the gains from hiring are strictly lower for j than
for i. So j must choose a lower hiring rate than i: j’s optimal rate, θ∗, is lower
than i’s optimal rate, S(w∗+∆).19 This completes the argument: S must coincide
with S, so there is a unique equilibrium.

The argument relies on the fact that i and j expect the same joint distribution of
X and changes in W . More precisely, (Wv −Wt, Xv)v≥t has the same distribution
at the two states. Since a Brownian motion has i.i.d. increments, (Wv−Wt)v≥t has
the same distribution. But since eS is a translation of S and since Xt is the same
at the two states, firms i and j expect any given path (Wv −Wt)v≥t to generate the
same path (Xv)v≥t of employment rates. Thus, (Wv −Wt,Xv)v≥t has the same
distribution at the two states.

The above argument presumes that each continuation path of W generates a
unique path of X. By equation (19), X is the solution to the differential equation

18More precisely, (Wv−Wt,Xv)v≥t has the same distribution at the two states. Since a Brownian
motion has i.i.d. increments, (Wv −Wt)v≥t has the same distribution. But since eS is a translation
of S and since Xt is the same at the two states, i and j expect any given path (Wv −Wt)v≥t to
generate the same path (Xv)v≥t of proportions of players in mode-1. Thus, (Wv−Wt, Xv)v≥t has
the same distribution at the two states.

19Strictly speaking, it is only weakly lower. This technical point is addressed in the proof.
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Ẋ = θ(1−X)− δX , where the hiring rate θ depends on the state (W,X) and time
t. This equation would have a unique solution if θ were Lipschitz continuous in
X. However, it may not be: a small increase in X can easily lead to a jump in the
optimal hiring rate, making θ discontinuous. Instead, we show uniqueness using
a weaker property: that the effect of X on θ is bounded relative to the effect of
W on θ. This follows from equation (11), which provides an upper bound on the
effect of X on workers’ productivity, and assumption A4, which implies a lower
bound of the effect of W on their productivity.20 In addition, the changes in X are
infinitesimal compared to the changes in W over small time intervals.21 Thus, over
small time intervals, changes in W effectively “blur” the effect of X on θ, making
θ Lipschitz in a probabilistic sense in X.

This completes the intuition for the case of Brownian shocks.

6.1 Seasonality and Mean-Reversion
The same argument might appear to break down when W displays mean reversion
and seasonality (axiom A2). The problem is in the last step: if ∆ > 0, the
distribution of changes in W will not, in general, be the same at the two states, so
the distribution of changes in X may differ as well. This problem is clearest in
the case of mean-reversion. For example, suppose W reverts to a mean value that
lies somewhere between w∗ and w∗ + ∆. Firm i at w∗ would expect W to trend
upwards while firm j at w∗ + ∆ will expect it to drift downwards. Since eS is an
exact translation of S, i will expect, on average, higher values of X than j. On the
other hand, W will tend to be lower for firm i than for firm j since it starts lower.
These two differences go in opposite directions: one makes hiring more appealing
and one less. Thus, the two firms may well both want to choose the same hiring
rate: the two strategies may not coincide.

How do we overcome this problem? We exploit the dynamic structure of the
game: we use a translation of S that varies over time: (eSt)t≥0 instead of eS. We
move the translation in such a way that if firm i believes others will choose hiring
rates given by eSt at each future time t, it does expect the same distribution of paths
ofX as firm j, which expects others to choose hiring rates given by S. For example,
if the payoff parameter is mean-reverting, then the strategy eSt would drift upwards

20More precisely, W is expected to spend a positive amount of time in the future in the interval
(w1, w2), where it will have a positive effect on workers’ productivity. This creates a strictly positive
effect of the current value of W on future productivity and thus on firms’ current hiring incentives.

21Changes in W over a short time interval ε have a large random component: their standard
deviation is of order

√
ε. On the other hand, since firms’ hiring and layoff rates are bounded, the

changes in X are of order ε, which becomes infinitely smaller than
√
ε as ε→ 0.
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with W over time, gradually approaching S. An example appears in Figure 11 for
some times t and t0, where t < t0.

'
~

tStS~ SS

W  W has mean-reverting drift

θθ =  

0=θ  

Figure 11:

The argument relies crucially on the condition in assumption A2 that any mean
reversion in W eventually die out. This condition implies that the translations don’t
have to actually converge to S over time.22 If they did, then regardless of how far to
the left we shifted the time 0 translation of S, subsequent translations would have to
converge eventually to S and thus would not all lie to the left of S as the argument
requires.

7 Concluding Remarks

7.1 Relation to Global Games
Our limit uniqueness argument generalizes the arguments of BFP and FP. However,
providing a general argument for the case of endogenous frictions and seasonal and
mean-reverting shocks requires a significant extension of that logic. The intuition
is most closely related to results in Frankel, Morris, and Pauzner [12] (henceforth,
FMP). They study a static model with incomplete information. Players choose

22More precisely, the translations are given by eSt(Wt) = St(Wt + g(t)∆), where g(t) =

exp
³R t

s=0
νsds

´
. (We write St since this lowest surviving profile can also move over time - as

can the highest, St.) For example, if there is mean reversion, then νt < 0, so g(t) shrinks over time:eS gradually approaches S. The parameter ∆ is the infimum of parameters for which eSt lies to the
left of St for all t. The condition in A2 that exp

¡R∞
s=0

|νs| ds
¢
< ∞ implies that g(t) is bounded

above by a strictly positive constant, so by the existence of dominance regions such a∆ must exist.
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from a compact set of actions. Each player receives a private signal of a common
parameter that affects everyone’s payoffs. The prior over this parameter includes
“dominance regions” in which the highest and lowest actions are strictly dominant.
FMP’s model is an example of a global game (Carlsson and van Damme [7], Morris
and Shin [25]).

FMP show that a unique equilibrium survives iterative dominance. While the
details are different, there is an analogy. In both cases, players play against op-
ponents in different but nearby “states”: the value of the Brownian motion at the
moment when the opponent picks her action in this paper and a player’s payoff sig-
nal in FMP. This local interaction gives rise to a contagion effect that begins in the
dominance regions and spreads throughout the state space. The whole state space
is affected because the interaction structure is stationary: the probability of playing
against an agent who sees a state a given distance from one’s own state is indepen-
dent of one’s own state.23 Using this property, a translation argument implies that
the lowest and highest strategies surviving iterative dominance must coincide.

The translation argument itself is also similar in some respects but not in others.
In both papers, the vertical axis captures a player’s action and the horizontal axis
represents the payoff parameter. But in this paper, strategies depend also on the
population action distribution X, which is not pictured in the graphs of section 6.
To display a strategy in its entirety we would need three dimensions. In addition,
we have to establish that the system is determinate: that for almost any path of the
Brownian motion, the path of X is unique. This difficulty is absent in the static
case. These are the essential differences.

As explained in section 6.1, mean-reversion poses a problem for our translation
argument. A phenomenon like mean reversion can also occur in FMP’s setting (and
in other global games). It occurs when the prior over the true payoff parameter is
single-peaked and the noise in the signals does not vanish. Then when a player
gets a high signal, chances are her signal error was positive, so she believes that
her opponent probably got a signal below hers and thus is likely to pick a lower
action. Analogously, when W is mean-reverting, if a player sees a high value of
W , those who pick actions after her will tend to see lower values of W and thus
pick lower actions. In both cases, the strategic effect (expecting others to pick
lower actions) can offset the direct effect of seeing a higher signal/parameter on
a player’s incentive to pick a higher action, and the translation argument may not

23In FMP, a player’s signal asymptotically has no effect on her posterior belief that her oppo-
nent’s signal differs from hers by a given amount. In this paper, the stationarity of Brownian motion
implies that the payoff parameter a player sees when choosing her action has no effect on the prob-
ability that she will meet an opponent who will have chosen his action when the payoff parameter
will have shifted by a given amount.
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work.
As we show in section 6.1, mean-reversion in dynamic games can be overcome

by exploiting the game’s dynamic structure (as long as the mean reversion asymp-
totically disappears). Each successive player uses a translation that is a bit closer
(in a sense) to the strategy S that is being translated. This approach does not seem
to work in static games. Since player i plays against player j, who in turn plays
against player i, one cannot place each player’s strategy closer than the other’s to
a given strategy. If j’s strategy is closer than i’s, then i’s strategy must be farther
away than j’s.

Indeed, static games with noisy payoff signals can have multiple equilibria when
the noise is not taken to zero (Morris and Shin [26, 27]). A stronger statement can
be made: if the prior is single-peaked and the noise is positive, then there must
exist payoffs for which the equilibrium is not unique. In contrast, in our setup,
if the mean reversion eventually dies out, then the equilibrium is unique for any
payoffs—regardless of how strong the strategic complementarities are.

We will show the result for static games using a simple example. Consider the
following payoff matrix, where xi is player i’s payoff signal and c > 0 is a constant
that is common knowledge.24

Player 2
R L

Player 1 R 1 + cx1, 1 + cx2 cx1, 0
L 0, cx2 1, 1

Suppose xi = θ + εi where θ ∼ N(0, 1), ε1, ε2 ∼ N(0, σ2), and θ, ε1, and ε2 are
independent. This game has dominance regions25 and strategic complementarities,
and an increase in a player’s signal raises the relative payoff from playing R. By
standard reasoning (e.g., Morris and Shin [25]), there is a unique equilibrium in the
limit as the signal noise vanishes.

We consider threshold equilibria in which a player plays R if her signal exceeds
some cutoff x∗ and L otherwise. For this to be an equilibrium, a player with signal
xi = x∗ must be indifferent between R and L. We will now show that as long as
the noise is positive, there exist payoffs for which there is more than one threshold
equilibrium:

24We simplify by supposing that a player’s payoff depends on her signal rather than on θ. This is
not necessary for there to be multiple equilibria.

25If xi > 1/c, it is strictly dominant to play R; if xi < −1/c, L is strictly dominant.
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CLAIM 1 No matter how small is σ2 > 0, there are multiple threshold equilibria
in the above global game if c > 0 is small enough.

Proof: Appendix C.

The intuition is that raising the cutoff threshold x∗ has two opposing effects on
the incentives of a player with signal xi = x∗. The first is the direct effect on
the payoff matrix: raising x∗ makes R more appealing for a player with signal
xi = x∗, since her signal is higher. If this were the only effect, there would be a
unique equilibrium. But with positive noise there is also a strategic effect: since
the prior is single-peaked, raising x∗ leads a player with signal x∗ to conclude that
her opponent is more likely to get a signal that is less than her own. Since players
with signals below the cutoff play L, this strategic effect makes L more appealing
by strategic complementarities. If the strategic effect is strong enough relative to
the direct effect, there can be multiple threshold equilibria.

The direct effect is proportional to c. The strategic effect is increasing in σ2

since a less precise signal gives the prior more weight. As long as the prior is
single-peaked, the strategic effect is positive for any σ2 > 0. Thus, if the direct
effect (as measured by c) is small enough given σ2, there can be multiple threshold
equilibria.

A Notation Guide
Tables 1 and 2, which appear at the end of this paper, define the principal notation
used in the body of this paper.

B Computing the Equilibrium
This section gives an algorithm for computing tight upper and lower bounds on the
switching rates that can be chosen in any equilibrium in the general model. For
simplicity, we assume the shocks are stationary: the change in W over time dt has
mean−ν(Wt−Wmean)dt and variance σ2dt, where ν ≥ 0 and σ2 > 0 are constants.
This means that:

dWt = −ν(Wt −Wmean)dt+ σdBt (22)

where ν is a nonnegative constant and B is a Brownian motion with zero drift and
unit variance.

There are two cases. If ν = 0, W follows a Brownian motion. The upper
and lower bounds must be equal since the equilibrium is unique by Theorem 1. If
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ν > 0, W reverts to the mean value Wmean. Since condition 2 in axiom A2 does not
hold in this case, there may be multiple equilibria: equality of the upper and lower
bounds is not guaranteed.

In both cases, the bounds are tight. In particular, the following two strategy
profiles are equilibria, where the functions km(W,X) and km(W,X) give the com-
puted upper and lower bounds on the switching rate of an agent in mode m = 1, 2
at each state.

Highest-X Equilibrium: Mode-1 players play k1 while mode-2 players play k
2.

Lowest-X Equilibrium: Mode-1 players play k
1 while mode-2 players play k2.

Why? We find each strategy profile by iterating the best-reply correspondence un-
til it converges. Since the result is a fixed point of the best-reply correspondence,
it must be an equilibrium. The only difference is the starting point of the itera-
tions. In the Highest-X Equilibrium, we begin the iterations with players choosing
k1 = K1 and k2 = K

2 at each state. This creates the highest feasible path of
X, which by Strategic Complementarities creates the strongest incentives to be in
mode 1. Likewise, in the Lowest-X Equilibrium, we begin the iterations with play-
ers choosing k1 = K

1 and k2 = K2 at each state. This creates the lowest feasible
path of X, which by Strategic Complementarities creates the strongest incentives
to be in mode 2.

We first prove some useful bounds on the relative value of being in mode 1 vs.
mode 2 for a payoff-maximizing player.

LEMMA 1 Suppose W follows the process dWt = −ν(Wt − Wmean)dt + σdBt

where B is a Brownian motion with zero drift and unit variance and ν ≥ 0. De-
fine:26

c0 =
α

r

c1 =
maxx∈[0,1] |∆u(0, x)|

r
+ α

h
σ +

σ

r2

i
c01 =

maxx∈[0,1] |∆u(0, x)|
r

+ α

∙
|Wmean|

µ
1

r
− 1

r + ν

¶
+

σ

r
√
2ν

¸
where ∆u(w, x) = u(1, w, x)− u(2, w, x) is the difference in direct payoff flows in
mode 1 vs. mode 2 at state (w, x). Fix a strategy profile for all players but one.

26The term maxx∈[0,1] |u(1, 0, x)− u(2, 0, x)| equals the greatest absolute difference in direct
utility between the two modes when W = 0 and X can take any value between 0 and 1.
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Call her player i. Let V m
t be i’s continuation payoff at time t if she is in mode

m = 1, 2 and plays optimally from time t onwards. The following bounds hold
regardless of the strategy profile of the other players.

1. Upper Bounds: If ν = 0, then |V 1
t − V 2

t | ≤ c0 |Wt| + c1. If ν > 0, then
|V 1

t − V 2
t | ≤ c0 |Wt|+ c01.

2. Lower Bounds: Assume there is an α > 0 such that for all x, w > w0, and
any feasible k1 and k2,

D(w, x, k1, k2)−D(w0, x, k1, k2) > α (w − w0)

If ν = 0, then for Wt ≥ 0, we have V 1
t − V 2

t ≥ −c1 + α
r+2K

Wt; for Wt ≤ 0
we have V 1

t − V 2
t ≤ c1 +

α
r+2K

Wt. If ν > 0, then for Wt ≥ 0, we have
V 1
t −V 2

t ≥ −c01+ α
r+2K+ν

Wt; forWt ≤ 0we have V 1
t −V 2

t ≤ c01+
α

r+2K+ν
Wt.

Proof: p. 79.

We discretize time into periods of length ∆ ≈ 0: time t equals 0,∆, 2∆, and so
on. An agent who chooses the switching rate k in a given period switches modes
with probability k∆. W takes values that are always an integer multiple of σ

√
∆;

in each period, it jumps up or down by this amount. The probability of jumping up
is pν(W ) = 1

2
− ν

√
∆

2σ
(W −Wmean). This guarantees that the expected change in

W over one period has mean −ν(W −Wmean)∆ and variance σ2∆. Equation (22)
thus holds in the limit as ∆→ 0.

First we find the equilibrium with the lowest rate of increase of X in each state
(W,X). Then we find the equilibrium with the highest rate. In the continuous-time
model with ν = 0, these equilibria are identical (Theorem 1). In discrete time, the
equilibria may differ in principle; in practice, we find that they usually agree or are
very close.

We find the lowest equilibrium in the following way; the highest equilibrium
is found analogously. We first compute very low and high values w, w, such that
players have strictly dominant switching rates for all W ≤ w and for all W ≥ w.27

We now need to determine how players behave for W between w and w. Clearly,
we cannot determine how they behave for the entire continuum of possible values

27This is made easy if we assume that the relative payoff flow in mode 1, D(Wt,Xt, k
1, k2), is

increasing in Wt at some minimum rate α > 0. Using part 2 of Lemma 1, one can compute w and
w using the Switching Rate Rule. Without this extra assumption, one must guess at values of w and
w, compute the equilibrium as described below, and then check that at w, mode 1 (2) agents do pick
their highest (lowest) switching rates, and that the reverse holds at w.
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of X between zero and one. Instead, we compute their behavior at values of X that
are integer multiples of 1/N for some large integer N . We thus have a finite grid
of states (w, x). At each such state, we need to compute players’ switching rates in
modes 1 and 2. We do this as follows.

Let
∆ < min

½
1

r + 2K
,
1

NK

¾
(23)

where K is the maximum switching rate that any player can ever choose. For any
(w, x) in the grid, let k1−1(w, x) = k10(w, x) = K

1 and k2−1(w, x) = k20(w, x) = K2.
Let ∇−1(w, x) = ∇0(w, x) be the lower bound, given in Lemma 1, on the relative
value of being in mode 1 at state (w, x) in any equilibrium. This bound is weakly
increasing in w and x. For any n > 0, let k1n(w, x) and k2n(w, x) be the optimal
switching rates under the belief that all other agents will switch at rates given by
k1n−1 and k2n−1 and that continuation payoffs in the next period will be given by
∇n−1. Let ∇n(w, x) be the relative value of being in mode 1 at state (w, x) under
this belief. More precisely, optimal switching rates are given by

k1n(Wt,Xt) = argmaxk
£
−(k∆)En−1

t ∇n−1(Wt+∆, Xt+∆)− c1(k,Xt)∆
¤

k2n(Wt,Xt) = argmaxk
£
(k∆)En−1

t ∇n−1(Wt+∆,Xt+∆)− c2(k,Xt)∆
¤

and the relative value of being in mode 1 is given by

∇n(Wt,Xt) = D(Wt,Xt, k
1
n, k

2
n)∆+(1−r∆−k1n∆−k2n∆)En−1

t ∇n−1(Wt+∆,Xt+∆)

(ignoring terms of second order in ∆) where En−1
t ∇n−1(Wt+∆,Xt+∆) denotes the

expected relative value of being in mode 1 in the next period if other players switch
at the rates k1 = k1n−1(Wt,Xt) and k2 = k2n−1(Wt, Xt) in the current period:

En−1
t ∇n−1(Wt+∆,Xt+∆)

= pν(W )∇n−1(Wt + σ
√
∆,Xt+∆) + [1− pν(W )]∇n−1(Wt − σ

√
∆,Xt+∆)

As implied by this expression, the change in X is deterministic. Since there is
a continuum of agents, the proportion of mode 1 agents who switch to mode 2 is
k1n−1∆ and the proportion of mode 2 agents who switch to mode 1 is k2n−1∆. Thus,
Xt+∆ − Xt = −Xtk

1
n−1∆ + (1 − Xt)k

2
n−1∆. Even if Xt is an integer multiple

of 1/N , Xt+∆ may not be. Thus, we use linear interpolation to approximate the
relative value of being in mode 1 at Xt+∆. Since ∆ < 1/KN , X never leaves the
unit interval: |Xt+∆ −Xt| < 1/N .

For any n ≥ 0, the following properties hold by induction:
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1. At any state (w, x), the one-period increase in X that would result if all agents
were to use the switching rates k1n(w, x) and k2n(w, x) constitutes a lower
bound on how much X can ever rise in any equilibrium.28

2. ∇n gives a lower bound on the relative value of being in mode 1 at each state
in any equilibrium, and is weakly increasing in w and x;

3. k1n gives an upper bound on the switching rate chosen by mode-1 players at
each state in any equilibrium;

4. k2n gives a lower bound on the switching rate chosen by mode-2 players at
each state in any equilibrium;

5. ∇n is weakly greater than∇n−1 at each state;29

6. k1n is weakly less than k1n−1 at each state;

28Since there are 1−X mode-1 agents, who would switch with probability k1n∆, and X mode-2
agents, who would switch with probability k2n∆, the one-period increase in X would be k1n∆(1 −
X)− k2n∆X.

29At the state (Wt, Xt),

∇n −∇n−1 =
£
−c1(k1n, Xt) + c2(k2n,Xt)

¤
∆+ (1− r∆− k1n∆− k2n∆)E

n−1
t ∇n−1(Wt+∆, Xt+∆)

−
£
−c1(k1n−1, Xt) + c2(k2n−1, Xt)

¤
∆

+ (1− r∆− k1n−1∆− k2n−1∆)E
n−2
t ∇n−2(Wt+∆, Xt+∆)

= A+B + C +D +E

where A = −c1(k1n, Xt)∆− k1n∆E
n−1
t ∇n−1(Wt+∆, Xt+∆)

−
£
−c1(k1n−1, Xt)∆− k1n−1∆E

n−1
t ∇n−1(Wt+∆, Xt+∆)

¤
B = −k1n−1∆

£
En−1
t ∇n−1(Wt+∆,Xt+∆)−En−2

t ∇n−2(Wt+∆, Xt+∆)
¤

C = c2(k2n, Xt)∆− k2n∆E
n−1
t ∇n−1(Wt+∆, Xt+∆)

−
£
c2(k2n, Xt)∆− k2n∆E

n−2
t ∇n−2(Wt+∆, Xt+∆)

¤
D = c2(k2n, Xt)∆− k2n∆E

n−2
t ∇n−2(Wt+∆, Xt+∆)

−
£
c2(k2n−1, Xt)∆− k2n−1∆E

n−2
t ∇n−2(Wt+∆, Xt+∆)

¤
E = (1− r∆)

£
En−1
t ∇n−1(Wt+∆, Xt+∆)−En−2

t ∇n−2(Wt+∆, Xt+∆)
¤

Note that A ≥ 0 since k1n solves maxk
£
−c1(k,Xt)∆− k∆En−1

t ∇n−1(Wt+∆, Xt+∆)
¤
; D ≥ 0

since k2n−1 solvesmink
£
c2(k,Xt)∆− k∆En−2

t ∇n−2(Wt+∆, Xt+∆)
¤
; and

B+C+E =
£
1− r∆− k1n−1∆− k2n∆

¤ £
En−1
t ∇n−1(Wt+∆,Xt+∆)−En−2

t ∇n−2(Wt+∆, Xt+∆)
¤

which by induction is nonnegative since∆ < 1/(r + 2K).
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7. k2n is weakly greater than k2n−1 at each state.

In addition, the switching rates are bounded by assumption, and it can be shown
easily that ∇n is bounded as well. Hence, these three sequences (∇n, k1n, and k2n)
are all monotone and bounded as n grows. They therefore must converge as n goes
to infinity. Let them converge to ∇∞, k1∞, and k2∞, respectively. By the above
properties we have:

1. ∇∞ gives a lower bound on the relative value of being in mode 1 at each state
in any equilibrium;

2. k1∞ gives an upper bound on the switching rate chosen by mode-1 players at
each state in any equilibrium;

3. k2∞ gives a lower bound on the switching rate chosen by mode-2 players at
each state in any equilibrium.

Properties 2 and 3 imply that k2∞(1 − X) − k1∞X is a lower bound on the rate of
change of X in any equilibrium, as claimed. Analogously, we can obtain an upper
bound on the rate of change of X . If these bounds coincide, they must be the
unique equilibrium with shocks.

C Proofs
First, some preliminaries. Since D(w, x, k1, k2) is strictly increasing in w, there
must be a constant α > 0 such that if w > w0,

D(w, x, k1, k2)−D(w0, x, k1, k2) ∈ [α(w − w0), α (w − w0)] (24)

for all w,w0 ∈ [w,w], x ∈ [0, 1], k1 ∈ [K1,K
1
], and k2 ∈ [K2,K

2
] (all compact

sets).
In the remainder of the proof, we normalize the cost of choosing the lowest

possible switching rate to zero, by letting bu(m,w, x) = u(m,w, x) − cm(Km, x)
and bcm(k, x) = cm(k, x) − cm(Km, x). We then relabel bu and bc to u and cm,
respectively.

Lemma 2 shows that W can be written in terms of a Brownian motion by si-
multaneously transforming space and time. This is the key result that lets us prove
uniqueness with seasonal and mean-reverting shocks.
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LEMMA 2 Consider the diffusion given by dWt = (νtWt+µt)dt+σtdBt where B
is a Brownian motion with zero drift and unit variance. For the following functions
g and h, the process g(t, Bh(t)) has the same distribution as the process W :

g(t, z) = exp

µZ t

s=0

νsds

¶
z +

Z t

s=0

µs exp

µZ t

v=s

νvdv

¶
ds (25)

h(t) =

Z t

s=0

exp

µ
−2
Z s

v=0

νvdv

¶
σ2sds

where B0 = W0, h is strictly increasing and h(0) = 0. As of time t0 ≤ t, Wt is
normal with mean exp

³R t
s=t0 νsds

´
Wt0+

R t
s=t0 µs exp

³R t
v=s

νvdv
´
ds and varianceR t

s=t0 exp
³
2
R t
v=s

νvdv
´
σ2sds. If, in addition, that there are constants 0 < N1 <

N2 < ∞ such that, for all t, |νt| , |µt| < N2,
R∞
s=0
|νs| ds < N2, σt ∈ [N1, N2], and

σ̇t ≤ N2, then:

1. There are positive constants γ and γ such that for all t, t0, and z > z0,
g(t, z) − g(t, z0) ∈

£
γ (z − z0) , γ (z − z0)

¤
and for sufficiently small |t− t0|,

|g(t, z)− g(t0, z)| ≤ γ (g(t, z) + 1) |t− t0|.

2. There are constants ρ ≥ ρ > 0 such that for all t > t0, h(t) − h(t0) ∈£
ρ(t− t0), ρ(t− t0)

¤
and |h0(t)− h0(t0)| ≤ ρ |t− t0|. (h0 is the derivative of

h.)

Proof of LEMMA 2. We first verify that g(t, Bh(t)) has the same infinitesimal
drift and variance as Wt. Since both processes have continuous paths a.s., this will
imply that they are identically distributed. By definition,

g(t, Bh(t)) = exp

µZ t

s=0

νsds

¶
Bh(t) +

Z t

s=0

µs exp

µZ t

v=s

νvdv

¶
ds

=⇒ d
£
g(t, Bh(t))

¤
= exp

µZ t

s=0

νsds

¶
dBh(t) +

£
νtg(t, Bh(t)) + µt

¤
dt

so that Ed
£
g(t, Bh(t))

¤
=
¡
νtg(t, Bh(t)) + µt

¢
dt and

E
£
dg(t, Bh(t))

2
¤
= exp

µ
2

Z t

s=0

νsds

¶
E
h¡
dBh(t)

¢2i
= exp

µ
2

Z t

s=0

νsds

¶
[h(t+ dt)− h(t)]

= exp

µ
2

Z t

s=0

νsds

¶
exp

µ
−2
Z t

v=0

νvdv

¶
σ2t dt = σ2t dt
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proving that the two processes have the same distributions.
Since W is a Markov process,

Wt =
L
exp

µZ t

s=t0
νsds

¶ bBbh(t) + Z t

s=t0
µs exp

µZ t

v=s

νvdv

¶
ds

where bh(t) = R t
s=t0 exp

¡
−2
R s
v=t0 νvdv

¢
σ2sds, “=

L
” denotes equality in law (distribu-

tion), and bB is another Brownian motion with zero drift and unit variance, satisfying
B0 = Wt0 . The only stochastic term isb bBbh(t), which is normal since bB is a Brown-

ian motion. Hence, Wt is normal with mean Et0Wt = exp
³R t

s=t0 νsds
´
Wt0 +R t

s=t0 µs exp
³R t

v=s
νvdv

´
ds

and variance

V art0Wt = exp

µ
2

Z t

s=t0
νsds

¶
V ar

³ bBbh(t)´
= exp

µ
2

Z t

s=t0
νsds

¶bh(t) = Z t

s=t0
exp

µ
2

Z t

v=s

νvdv

¶
σ2sds

For property 1, note that

|g(t, z)− g(t, z0)| = exp
µZ t

s=0

νsds

¶
|z − z0| ∈

£
e−N2 |z − z0| , eN2 |z − z0|

¤
Moreover,30

|g(t0, z)− g(t, z)| =
¯̄̄̄̄̄
¯g(t, z)

Ã
exp

ÃZ t0

s=t

νsds

!
− 1
!
+

Z t0

s=t

µs exp

ÃZ t0

v=s

νvdv

!
ds

¯̄̄̄̄̄
¯

≤
¯̄̄̄
g(t, z)

³
eN2(t

0−t) − 1
´
+N2e

N2(t0−t)(t0 − t)
¯̄̄̄

≤ |g(t, z)| 2N2(t
0 − t) + 2N2

2 (t
0 − t) ≤ 2N2

2 (|g(t, z)|+ 1)(t0 − t)

30This is because

|g(t0, z)− g(t, z)| =

¯̄̄̄̄̄
¯̄̄̄̄̄
¯

exp
³R t

s=0
νsds

´³
exp

³R t0
s=t

νsds
´
− 1
´
z

+
R t
s=0

µs exp
³R t

v=s
νvdv

´³
exp

³R t0
v=t

νvdv
´
− 1
´
ds

+
R t0
s=t

µs exp
³R t0

v=s
νvdv

´
ds

¯̄̄̄̄̄
¯̄̄̄̄̄
¯
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for small enough |t− t0|, as claimed. For property 2,

h(t)− h(t0) =

Z t

s=t0
exp

µ
−2
Z s

v=0

νvdv

¶
σ2sds

∈
£
N2
1 e
−2N2(t− t0), N2

2 e
2N2(t− t0)

¤
and

|h0(t)− h0(t0)| =
¯̄̄̄̄̄
¯exp

µ
−2
Z t

v=0

νvdv

¶
σ2t − exp

Ã
−2
Z t0

v=0

νvdv

!
σ2t0

¯̄̄̄̄̄
¯

≤ e2N2
¯̄̄̄̄̄
exp

µ
−2
Z t

v=t0
νvdv

¶
− 1
¯̄̄̄̄̄
σ2t

+

¯̄̄̄̄̄
exp

µ
−2
Z t

v=0

νvdv

¶¡
σ2t − σ2t0

¢¯̄̄̄̄̄
≤ e2N2N2

2 (e
2N2(t−t0) − 1) + e2N2N2(t− t0)

≤ e2N2N2
2 (3N2(t− t0)) + e2N2N2(t− t0)

for sufficiently small t− t0. By the triangle inequality, this generalizes to any t− t0,
so |h0(t)− h0(t0)| ≤ ρ |t− t0| for any ρ ≥ e2N2N2(3N

2
2 + 1). This proves property

2. Q.E.D.Lemma 2

Proof of THEOREMS 1-5. Part 1 of the following Lemma proves that the relative
value of being in mode 1 equals the expression given in Theorem 5. Part 2 proves
some useful bounds on this difference. Part 3 establishes Theorem 5.

LEMMA 3 Let V m
t = V m(W,X, t) be the continuation payoff of a player who is

in mode m ∈ {1, 2} at state (W,X) at time t. Let kmv be the player’s optimal
switching rate conditional on being in m at time v ≥ t. Then

1.

V 1
t − V 2

t = E

Z ∞

v=t

exp

µ
−
Z v

s=t

(r + k1s + k2s)ds

¶
D(Wv,Xv, k

1
v, k

2
v)dv

(26)

2. For all states (Wt,Xt) and for any beliefs over the path (Xv)v≥t that will
result from any path (Wv)v≥t,

V m
v − V m0

v ≤ E

Z ∞

s=v

e−r(s−v) (|u(m,Ws, Xs)− u(m0,Ws,Xs)|+ C) ds

for any m,m0 ∈ {1, 2}. Moreover, there are positive constants c0 and c1
such that |V 1

t − V 2
t | ≤ c0 |Wt|+ c1.
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3. Form ∈ {1, 2}, kmv ∈ argmaxk≥0
¡
k(V m0

v − V m
v )− cm(k,Xv)

¢
, wherem0 =

1 if m = 2 and vice-versa.

Proof of LEMMA 3. For m,m0 ∈ {1, 2}, m 6= m0, the Bellman equation for V m
v

is

V m
v ≈

⎡⎣ [u(m,Wv,Xv)− cm(kmv ,Xv)] dv
+kmv · dv · EV m0

v+dv

+ [1− kmv dv − rdv]EV m
v+dv

⎤⎦ (27)

This becomes exact as dv → 0, proving part 3. Rearranging (27), we obtain

EdV m
v =

h
−u(m,Wv,Xv) + cm(kmv , Xv)− kmv V

m0
v + (kmv + r)V m

v

i
dv

where dV m
v = V m

v+dv − V m
v . Therefore,

E
¡
dV 1

v − dV 2
v

¢
=

∙
−D(Wv,Xv, k

1
v , k

2
v)

+(k1v + k2v + r) (V 1
v − V 2

v )

¸
dv (28)

This expectation is as of time v. Now multiply both sides by exp
£
−
R v
s=t
(r + k1s + k2s)ds

¤
,

integrate, and take the expectation as of time t, yielding (by iterated expectations)

E

Z ∞

v=t

exp

µ
−
Z v

s=t

(r + k1s + k2s)ds

¶£
dV 1

v − dV 2
v

¤
= E

Z ∞

v=t

exp

µ
−
Z v

s=t

(r + k1s + k2s)ds

¶ ∙
−D(Wv,Xv, k

1
v, k

2
v)

+(k1v + k2v + r) (V 1
v − V 2

v )

¸
dv

Integrating by parts,

E

Z ∞

v=t

exp

µ
−
Z v

s=t

(r + k1s + k2s)ds

¶£
dV 1

v − dV 2
v

¤
= E

µ
exp

µ
−
Z v

s=t

(r + k1s + k2s)ds

¶¡
V 1
v − V 2

v

¢¶∞
v=t

+E

Z ∞

v=t

exp

µ
−
Z v

s=t

(r + k1s + k2s)ds

¶
(k1v + k2v + r)

¡
V 1
v − V 2

v

¢
dv

But¯̄̄̄̄̄
E

µ
lim
v→∞

exp

µ
−
Z v

s=t

(r + k1s + k2s)ds

¶¡
V 1
v − V 2

v

¢¶¯̄̄̄̄̄
≤ lim

v→∞
e−r(v−t)E

¯̄̄
V 1
v − V 2

v

¯̄̄
.

We will now show that

lim
v→∞

e−r(v−t)E
¯̄̄
V 1
v − V 2

v

¯̄̄
= 0 (29)
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This will establish part 1.
For m = 1, 2, V m

v is no greater than the continuation payoff from always being
in the “right” action and paying the lowest possible switching cost of zero:

V m
v ≤ E

Z ∞

s=v

e−r(s−v)max {u(1,Ws,Xs), u(2,Ws,Xs)} ds

If one chooses the lowest switching cost, the worst that can happen is that one is
always in the wrong action; hence,

V m
v ≥ E

Z ∞

s=v

e−r(s−v)min {u(1,Ws,Xs), u(2,Ws,Xs)} ds.

Thus, ¯̄̄
V 1
v − V 2

v

¯̄̄
≤ E

Z ∞

s=v

e−r(s−v) |∆u(Ws, Xs)| ds

≤ maxx∈[0,1] |∆u(0, x)|
r

+E

Z ∞

s=v

e−r(s−v) |∆u(Ws,Xs)−∆u(0, Xs)| ds

where ∆u(Ws, Xs) = u(1,Ws,Xs) − u(2,Ws, Xs). (This proves the first for-
mula in part 2.) Since cm(Km, x) = 0 for m = 1, 2 and for all x, ∆u(w, x) =
D(w, x,K1,K2) is Lipschitz inw with constant α, so |∆u(Ws,Xs)−∆u(0,Xs)| ≤
α |Ws|. But

E |Ws| = E
hp

W 2
s

i
≤
p
E [W 2

s ] =

q
[EWs]

2 +Var (Ws)

≤
q
[EWs]

2 +
p

Var (Ws) = |EWs|+
p

Var (Ws)

where all expectations are conditioned on Wv. Thus, by Lemma 2,

E |Ws| ≤ exp
µZ s

s0=v

νs0ds
0
¶
|Wv|+

¯̄̄̄̄̄Z s

s0=v

µs0 exp

µZ s

v0=s0
νv0dv

0
¶
ds0
¯̄̄̄̄̄

+

sZ s

s0=v

exp

µ
2

Z s

v0=s0
νv0dv0

¶
σ2s0ds

0

≤ eN2 |Wv|+ (s− v)N2e
N2 + eN2N2

√
s− v (30)

Hence, there are positive constants c0, c1, and c2 such that¯̄̄
V 1
v − V 2

v

¯̄̄
≤ c2 +

Z ∞

s=v

e−r(s−v)α
¡
eN2 |Wv|+ (s− v)N2e

N2 + eN2N2

√
s− v

¢
ds

= c2 +
αeN2 |Wv|

r
+

αN2e
N2

r2
+

αN2e
N2
√
π

2r3/2
= c0 |Wv|+ c1 (31)
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(establishing the second bound in part 2) so

lim
v→∞

e−r(v−t)E
¯̄̄
V 1
v − V 2

v

¯̄̄
≤ c4 lim

v→∞
e−r(v−t) |Wv|

but by Chebyschev’s inequality, for any c5 > 0,

Pr(e−r(v−t) |Wv| > c5) ≤
E |Wv|
c5er(v−t)

≤ 1

c5
eN2−r(v−t)

¡
|Wt|+ (v − t)N2 +

√
v − tN2

¢
which goes to 0 as v →∞, establishing (29). Q.E.D.Lemma 3

By part 3 of Lemma 3, BR1(y, x) = argmax
k∈
h
K1,K

1
i[−ky − c1(k, x)] (resp.,

BR2(y, x) = argmax
k∈
h
K2,K

2
i[ky − c2(k, x)]) is the set of optimal switching rates

for a mode-1 (resp., mode-2) player when the relative value of being in mode 1 is
y. Lemma 4 shows that these best response correspondences have a closed graph
(part 1), satisfy the single crossing property (part 2), and have Lipschitz isoquants
(part 3):

LEMMA 4 1. (Closed Graph.) BR2(y, x) and BR1(y, x) are upper hemicon-
tinuous in y.

2. (Single Crossing.) Suppose y < y0. If k ∈ BR2(y, x), and k0 ∈ BR2(y0, x),
then k ≤ k0. If k ∈ BR1(y, x), and k0 ∈ BR1(y0, x), then k ≥ k0.

3. (Lipschitz Isoquants.) Suppose y − y0 > η |x− x0|. (η is defined in assump-
tion A6.) Then minBR2(y, x) ≥ maxBR2(y0, x0) and maxBR1(y, x) ≤
minBR1(y0, x0).

Proof of LEMMA 4.
1. Fix x. Let c(k) be shorthand for c1(k, x) or c2(k, x). We will show that

if the function c is left-continuous, then ζ(y) = argmaxk≥0(ky − c(k)) is upper
hemicontinuous. A similar argument holds for the function argmaxk≥0(−ky −
c(k)). Suppose there is a sequence (yn, kn)∞n=1 such that k∞ = limn→∞ kn and
y∞ = limn→∞ yn both exist and kn ∈ ζ(yn) for all n. Upper hemicontinuity
means that k∞ ∈ ζ(y∞) for all such sequences. We first show that limn→∞ c(kn) =
c(k∞). This is trivial if c is continuous at k∞. If not, we claim that there is an
I < ∞ such that if n > I , then kn ≤ k∞. By assumption, c is left continuous,
so it must not be right continuous at k∞. So let limk↓k∞ c(k) = c(k∞) + ε where
ε > 0. For any kn > k∞, since c is weakly increasing, knyn − c(kn) ≤ knyn −
c(k∞) − ε. Let I be large enough that n > I implies |knyn − k∞yn| < ε/2.
Then knyn − c(kn) ≤ k∞yn − c(k∞) − ε/2, so kn /∈ ζ(yn) after all. Therefore,
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if n > I , then kn ≤ k∞. Since c is left continuous, c(k∞) = limn→∞ c(kn), so
limn→∞ [k

nyn − c(kn)] = k∞y∞ − c(k∞).
Now suppose k∞ /∈ ζ(y∞). Then there is a k0 and an ε0 > 0 such that k0y∞ −

c(k0) > k∞y∞ − c(k∞) + ε0. We claim this implies kn /∈ ζ(yn) for large enough
n. Since limn→∞ [k

nyn − c(kn)] = k∞y∞ − c(k∞), for any ε00 > 0 there is
an I 0 such that if n > I 0, |knyn − c(kn)− [k∞y∞ − c(k∞)]| < ε00. So k0y∞ −
c(k0) > knyn − c(kn) + ε0 − ε00 for all n > I 0. But there is also an I 00 such
that if n > I 00, |k0y∞ − k0yn| < ε00 (as k0 is bounded by K). So k0yn − c(k0) >
knyn − c(kn) + ε0 − 2ε00. So setting ε00 = ε0/3, we know that if n > max{I 0, I 00},
then k0yn − c(k0) > knyn − c(kn), so kn /∈ ζ(yn) - a contradiction.

2. Suppose y < y0, k ∈ BR2(y, x), and k0 ∈ BR2(y0, x). Then k0y0 −
c2(k0, x) ≥ ky0 − c2(k, x) while ky − c2(k, x) ≥ k0y − c2(k0, x). Subtracting, we
obtain (k0 − k)(y0 − y) ≥ 0, so k0 ≥ k.31 The proof for BR1 is analogous.

3. We will show this for BR2; the proof for BR1 is analogous. Let k0 =
maxBR2(y0, x0) > K2. We will show that k0 is strictly better than any lower
switching rate at (y, x) by showing that k0y − c2(k0, x) > ky − c2(k, x) for all
k ∈ [K2, k0); equivalently, we will show that εy > c2(k0, x) − c2(k0 − ε, x) for
all ε ∈ (0, k0 − K2]. By definition of k0, k0y0 − c2(k0, x0) ≥ ky0 − c2(k, x0) for
all k ∈ [K2, k0). Letting ε = k0 − k, εy0 ≥ c2(k0, x0) − c2(k0 − ε, x0) for all
ε ∈ (0, k0 −K2] and so

εy = εy0 + ε(y − y0)

≥ c2(k0, x0)− c2(k0 − ε, x0) + ε(y − y0) > c2(k0, x0)− c2(k0 − ε, x0) + εη |x− x0|
=
£
c2(k0, x)− c2(k0 − ε, x)

¤
+ c2(k0, x0)− c2(k0, x)

−
£
c2(k0 − ε, x0)− c2(k0 − ε, x)

¤
+ εη |x− x0|

≥ c2(k0, x)− c2(k0 − ε, x)

for all ε ∈ (0, k0 −K2] by assumption A6. Q.E.D.Lemma 4

Let Zt = Bh(t). We now redefine the state space to be the set of triplets
(t, Zt, Xt) rather than (Wt,Xt) = (g(t, Zt), Xt). Since players know t, by (25)
they can invert g(t, Zt) to discover Zt. Let Dv(Zv, Xv, k

1
v , k

2
v) represent the rela-

tive payoff flow in mode 1 at time v:

Dv(Zv,Xv, k
1
v, k

2
v) , D(g(v, Zv),Xv, k

1
v , k

2
v) = D(Wv,Xv, k

1
v, k

2
v)

The iterative procedure begins by computing, at each state (t, Zt, Xt), an upper
bound Φ0 = Φ0(t, Zt,Xt) on V 1

t − V 2
t , the relative value of being in mode 1.

31This relies on the fact that if z0 = z, then k0 = k.
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We compute this bound using a belief that maximizes the relative value of being
in mode 1: that all players will immediately switch to mode 1 and remain there
forever.32 By Lemma 3,

Φ0(t, Zt,Xt) = E

Z ∞

v=t

exp

µ
−
Z v

s=t

(r + k1s + k2s)ds

¶
Dv(Zv, 1, k

1
v , k

2
v)dv

where k2v , k1v , k2s , and k1s are optimal given these beliefs.
Since there are 1−Xt mode 2 players, who switch to mode 1 at a rate no greater

than the maximum of BR2(Φ0(t, Zt,Xt)), and Xt mode 1 players, who switch out
of mode 1 at a rate no less than the minimum of BR1(Φ0(t, Zt,Xt)),33

Ẋt ≤ maxBR2(Φ0(t, Zt,Xt), Xt) · (1−Xt)−minBR1(Φ0(t, Zt,Xt), Xt) ·Xt

, π(Φ0(t, Zt,Xt), Xt) (32)

where we define π(y, x) to be maxBR2(y, x) · (1 − x) − minBR1(y, x) · x, the
highest rate of change of X that is consistent with rational behavior when Xt = x
and the relative value of being in mode 1 is y.

Equation (32) implies, for any state (t, Zt,Xt), a new upper bound Φ1(t, Zt, Xt)
on the relative value of being in mode 1. Φ1 is computed using the belief that
most favors mode 1: that for all v ≥ t, Ẋv will equal its the old upper bound,
π(Φ0(v, Zv, Xv), Xv). For all n ≥ 1, let Φn(t, Zt,Xt) be the relative value of
being in mode 1 on the belief that, at all times v ≥ t,

Ẋv = π(Φn−1(v, Zv, Xv), Xv) (33)

Let Φ∞(t, z, x) = limn→∞Φn(t, z, x).
A central fact used in our proof is that the dynamical system (33) has a unique

solution for any n, including n =∞. We prove this in a sequence of lemmas. For
any t, t0, and v ≥ t, define φ(v, t, t0) implicitly by

h(t0 + φ(v, t, t0))− h(t0) = h(t+ v)− h(t) (34)

where h is defined in Lemma 2. Let

τ(t, t0) = max
v≥0

|t0 + φ(v, t, t0)− t− v| (35)

Lemma 5 proves four important properties of these functions.

32The model restricts players to arrival rates belowK. The belief that players will all immediately
jump to mode 1 thus gives an (unattainable) upper bound on the relative value of being in mode 1.

33 The min andmax of the respective sets exist since the cost functions are left continuous.
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LEMMA 5 For any t and t0, let dt = t0 − t. For all v:

1. τ(t, t0) ∈
h
|dt| , ρ

ρ
|dt|
i
.

2. |φ(v, t, t0)− v| ≤ 2ρ
ρ
|dt| and |dt+ φ(v, t, t0)− v| ≤ ρ

ρ
|dt|.

3. |φ1(v, t, t0)− 1| ≤
³
ρ
ρ

´2
|dt|.

4. τ(t+ v, t0 + φ(v, t, t0)) ≤ τ(t, t0).

Proof of LEMMA 5. By (34), φ(0, t, t0) = 0, so τ(t, t0) ≥ |dt|. By equation (34),

|h(t+ v + dt+ [φ(v, t, t0)− v])− h(t+ v)| = |h(t+ dt)− h(t)| (36)

The left hand side of (36) is at least ρ |dt+ φ(v, t, t0)− v| while the right hand side
is no greater than ρ |dt| by assumption A3. So |dt+ φ(v, t, t0)− v| ≤ ρ

ρ
|dt|, which

shows parts 1 and 2. Differentiating (34) with respect to v,

|φ1(v, t, t0)− 1| =
¯̄̄̄̄̄
h0(t0 + φ(v, t, t0))− h0(t+ v)

h0(t0 + φ(v, t, t0))

¯̄̄̄̄̄
≤ ρ

ρ
|dt+ φ(v, t, t0)− v| ≤

µ
ρ

ρ

¶2
|dt| (37)

by part 2 of Lemma 2 and the prior computation. This shows part 3.
For part 4, let t00 = t+ v and t000 = t0 + φ(v, t, t0). Suppose that

s0 = argmaxs≥0 |t000 + φ(s, t00, t000)− t00 − s|

We will show that

t000 + φ(s0, t
00, t000)− t00 − s0 = t0 + φ(s0 + v, t, t0)− t− (s0 + v) (38)

implying

τ(t00, t000) = |t000 + φ(s0, t
00, t000)− t00 − s0|

= |t0 + φ(s0 + v, t, t0)− t− (s0 + v)| ≤ τ(t, t0)

Substituting,

t000 + φ(s0, t
00, t000)− t00 − s0

= t0 + φ(v, t, t0) + φ(s0, t+ v, t0 + φ(v, t, t0))− t− v − s0
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This equals t0 + φ(s0 + v, t, t0)− t− (s0 + v) if

φ(v, t, t0) + φ(s0, t+ v, t0 + φ(v, t, t0)) = φ(s0 + v, t, t0) (39)

By repeatedly applying (34), we obtain

h(t000 + φ(s0, t
00, t000))− h(t00 + s0) = h(t000)− h(t00)

= h(t0 + φ(v, t, t0))− h(t+ v) = h(t0)− h(t)

= h(t0 + φ(s0 + v, t, t0))− h(t+ s0 + v)

But t00 = t+ v. Thus, equating the first and last expressions,

h(t0 + φ(s0 + v, t, t0)) = h(t000 + φ(s0, t
00, t000))

Since h is strictly increasing by part 2 of Lemma 2,

t0 + φ(s0 + v, t, t0) = t000 + φ(s0, t
00, t000)

= t0 + φ(v, t, t0) + φ(s0, t+ v, t0 + φ(v, t, t0))

establishing (39). Q.E.D.Lemma 5

For any y, let f2(y, x) = maxBR2(y, x): the highest switching rate mode
2 players may choose if the relative value of being in mode 1 is y and Xt = x.
Let f1(y, x) = −minBR1(y, x): the negative of the lowest switching rate mode-1
players may choose in the same situation. Equation (33) implies that

Ẋv = f2(Φn−1(v, Zv, Xv), Xv)(1−Xv) + f1(Φn−1(v, Zv,Xv),Xv)Xv

The following lemma will be used to show that this system has a unique solu-
tion. In reading it, one should interpret the function Fm(v, z, x) for m = 1, 2 as
fm(Φn−1(v, z, x), x). Later we will show that this function indeed has the proper-
ties assumed in Lemma 6. Equation (40), which appears in the lemma, is just the
integral version of (33) for these functions F 1 and F 2.

LEMMA 6 Assume that F 1(t, z, x) and F 2(t, z, x) have the following properties:

1. They are weakly increasing in z.

2. There is a constant K such that |Fm(t, z, x)| ≤ K for m = 1, 2 and for all t,
z, and x.
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3. For m = 1, 2, there is a constant c2 such that if

z0 − z > c2(|x0 − x|+ τ(t, t0))

and |x0 − x| ≥
³
ρ
ρ

´2
τ(t, t0) then Fm(t0, z0, x0) ≥ Fm(t, z, x).

Then for any x0 ∈ [0, 1], Υ > 0, and almost every path (Zt)t∈[0,Υ] there exists a
unique Lipschitz path (Xt)t∈[0,Υ] such that

Xt = x0 +

Z t

s=0

¡
F 2(s, Zs, Xs)(1−Xs) + F 1(s, Zs, Xs)Xs

¢
ds (40)

Proof of LEMMA 6. For any N > 0 let ΥN be the first time t at which |Zt| > N .
We will prove that almost surely, for t ≤ 1/2 and for any N , there exists a unique
solution to the version of (40) that is killed when |Z| reaches N :

Xt = x0 +

Z t∧ΥN

s=0

Γ(s, Zs,Xs|F )ds (41)

where t ∧ΥN = min {t,ΥN}, F = (F 1, F 2), and

Γ(s, z, x|F ) = F 2(s, z, x)(1− x) + F 1(s, z, x)x (42)

Since the same argument can be repeated for t ∈ [1/2, 1] etc. and taking N → ∞,
this will prove the existence of a unique solution for all t. For brevity, we will write
t in place of t ∧ΥN .

We first prove existence. For any δ > 0, define Xδ
t = x0 +

R t
s=0

Γδsds,
where Γδs =

1
δ

R s
v=s−δ Γ(v, Zv,X

δ
v |F )dv. (For v ∈ [−δ, 0), let Zv = Z0 and

Xδ
v = x0.) Note that Ẋδ

t =
1
δ

R t
v=t−δ Γ(v, Zv,X

δ
v |F )dv; the right hand side is ab-

solutely bounded by K, so this equation has a unique solution that is Lipschitz with
constant K. Let Xt = lim supn→∞ Y n

t where Y n
t = supm>nX

1/m
t . The supre-

mum of an arbitrary family of Lipschitz functions with constant K is a Lipschitz
function with the same constant, and the same is true for the limit of a sequence of
such functions. Hence, for every n, the function Y n

t = supm>nX
1/m
t is Lipschitz

with constant K, and so is Xt. Moreover, for fixed t, there exists a subsequence
(mj)

∞
j=1 such that limj→∞X

1/mj

t = Xt. By extracting further subsequences and
then using the diagonal method we can obtain a subsequence (m0

j)
∞
j=1 of the origi-

nal sequence (mj)
∞
j=1 such that limj→∞X

1/m0
j

t = Xt for every rational t ≥ 0 (and
hence for every t ≥ 0). The convergence is uniform on compact intervals because
all functions X1/m0

j

t are Lipschitz with constant K.
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To finish the proof of existence, it remains only to show that (41) holds for
Xt = limj→∞X

1/m0
j

t . For any j,¯̄̄̄̄̄
Xt −

µ
x0 +

Z t

s=0

Γ(s, Zs,Xs|F )ds
¶¯̄̄̄̄̄
≤ Aj

1 +Aj
2 +Aj

3 (43)

where

Aj
1 =

¯̄̄̄̄̄
Xt −

µ
x0 +

Z t

s=0

Γ
1/m0

j
s ds

¶¯̄̄̄̄̄
Aj
2 =

¯̄̄̄̄̄Z t

s=0

Γ
1/m0

j
s ds−

Z t

s=0

Γ(s, Zs,X
1/m0

j
s |F )ds

¯̄̄̄̄̄
Aj
3 =

Z t

s=0

¯̄̄̄
Γ(s, Zs,X

1/m0
j

s |F )− Γ(s, Zs,Xs|F )
¯̄̄̄
ds

Since Aj
1 =

¯̄̄̄
Xt −X

1/m0
j

t

¯̄̄̄
, limj→∞Aj

1 = 0. Moreover,Z t

s=0

Γ
1/m0

j
s ds = m0

j

Z t

s=0

Z s

v=s−1/m0
j

Γ(v, Zv,X
1/m0

j
v |F )dvds

=

Z t

v=0

Γ(v, Zv, X
1/m0

j
v |F )dv + o(1/m0

j)

(reversing the order of integration), so that limj→∞Aj
2 = 0.

We now prove that limj→∞Aj
3 = 0. For m = 1, 2, all t ∈ <, y ∈ [0,K]

and x ∈ [0, 1], let Hm(t, y, x) = inf{z ∈ [−N,N ] : Fm(t, z, x) > y}; if this set
is empty, define Hm(t, y, x) = N . Let c4 = 3c2

³
ρ
ρ

´2
and define F 12(s, z, x) =

F 1(s, z, x) + F 2(s, z, x).

CLAIM 2 For any two states (t, z, x) and (t0, z0, x0), let |dt| = |t− t0|, |dz| =
|z − z0|, and |dx| = |x− x0| and α = |dz|+ c4 (|dt|+ |dx|). For m = 1, 2:

1. Fm (t0, z + c4 [|dt|+ |dx|] , x0) ≥ Fm(t, z, x).

2. Hm(t, y, x) is Lipschitz in t and x with constant c4.

3.

|Γ(t, z, x|F )− Γ(t0, z0, x0|F )|
≤
¯̄̄
F 2(t, z, x)− F 2(t0, z0, x0)

¯̄̄
+
¯̄̄
F 1(t, z, x)− F 1(t0, z0, x0)

¯̄̄
+ 2K |dx|

and

|Fm(t, z, x)− Fm(t0, z0, x0)| ≤ Fm(t, z + α, x)− Fm(t, z − α, x)
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4. For any processes Y ≥ 0 and X1 ∈ [0, 1],Z t

s=0

£
Fm

¡
s, Zs + Ys,X

1
s

¢
− Fm

¡
s, Zs,X

1
s

¢¤
ds

≤
Z K

y=−K

Z t

s=0

1(Hm(s, y,X1
s )− Zs ∈ [0, Ys])dsdy

5. Suppose that bFm(t, z, x) satisfies the assumptions of Lemma 6 and for any
(t, x), Fm(t, z, x) = Fm(t, z, x) at all but a measure zero set of z’s. LetbbHm(t, y, x) = inf{z ∈ [−N,N ] : bFm(t, z, x) > y}. Then Hm and bHm

coincide everywhere.

Proof of Claim. Part 1: Let x00 = x+
³
ρ
ρ

´2
τ(t, t0), z00 = z+c2

∙³
ρ
ρ

´2
+ 1

¸
τ(t, t0),

and z0 = z00 + c2

∙³
ρ
ρ

´2
τ(t, t0) + |dx|

¸
≥ z00 + c2 [|x00 − x0|]. (The inequality fol-

lows since
³
ρ
ρ

´2
τ(t, t0) + |dx| = |x00 − x|+ |x0 − x| ≥ |x00 − x0|.) By assumption

3 of Lemma 6 and part 1 of Lemma 5,

Fm(t, z, x) ≤ Fm(t0, z00, x00) ≤ Fm(t0, z0, x0)

But z0 = z+ c2

∙
2
³
ρ
ρ

´2
+ 1

¸
τ(t, t0) + c2|dx| ≤ z+ c4[τ(t, t

0) + |dx|] proving part

1.
Part 2: |Hm(t0, y, x0)−Hm(t, y, x)| =

¯̄̄̄̄̄
inf{z ∈ [−N,N ] : Fm(t0, z, x0) > y}
− inf{z ∈ [−N,N ] : Fm(t, z, x) > y}

¯̄̄̄̄̄
.

By part 1,

inf{z ∈ [−N,N ] : Fm(t, z, x) > y}
≥ inf{z ∈ [−N,N ] : Fm(t0, z + c4(|dx|+ |dt|), x0) > y}
≥ inf{z ∈ [−N,N ] : Fm(t0, z, x0) > y}− c4(|dx|+ |dt|)

Hence, Hm(t0, y, x0)−Hm(t, y, x) ≤ c4(|dx|+|dt|). A symmetric argument shows
that Hm(t, y, x)−Hm(t0, y, x0) ≤ c4(|dx|+ |dt|)

Part 3: For m = 1, 2, let Fm = Fm(t, z, x) and Fm0 = Fm(t0, z0, x0). We have

Γ(t, z, x|F )− Γ(t0, z0, x0|F ) (44)
= F 2 · (1− x) + F 1 · x− F 20 · (1− x0)− F 10 · x0 (45)
= (F 2 − F 20)(1− x) + F 20 · (x0 − x) + (F 1 − F 10)x+ F 10 · (x− x0)
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implying |Γ(t, z, x|F )− Γ(t, z, x0|F )| ≤ |F 2 − F 20| + |F 1 − F 10| + 2K |dx| as
claimed. By part 1, Fm0 ∈ [Fm(t, z − α, x), Fm(t, z + α, x)]; clearly, Fm is in the
same interval, so |Fm − Fm0| ≤ Fm(t, z+α, x)−Fm(t, z−α, x), proving part 3.

Part 4: Since Fm(s, z, x) = K −
R K
y=−K 1(F

m(s, z, x) ≤ y)dy,Z t

s=0

£
Fm

¡
s, Zs + Ys,X

1
s

¢
− Fm

¡
s, Zs, X

1
s

¢¤
ds

=

Z K

y=−K

Z t

s=0

£
1(Fm(s, Zs, X

1
s ) ≤ y)− 1(Fm(s, Zs + Ys, X

1
s ) ≤ y))

¤
dsdy

≤
Z K

y=−K

Z t

s=0

1(Zs ≤ H(s, y,X1
s ) ≤ Zs + Ys)dsdy

=

Z K

y=−K

Z t

s=0

1(H(s, y,X1
s )− Zs ∈ [0, Ys])dsdy

Part 5: Since both Fm and bFm are weakly increasing in z, the sets {z ∈
[−N,N ] : Fm(t, z, x) > y} and {z ∈ [−N,N ] : bFm(t, z, x) > y} are each in-
tervals of the form (ζ,N ] or [ζ,N ]. Since Fm and Fm agree almost everywhere,b
these intervals must also agree almost everywhere; hence, their infima must coin-
cide. Q.E.D.Claim 2

Let K 0 = K + c4. By part 3 of Claim 2, the absolute value of the integrand
in Aj

3 is a Lipschitz function of
¯̄̄̄
X
1/m0

j
s −Xs

¯̄̄̄
, which goes uniformly to zero as

j →∞, plusX
m∈{1,2}

h
Fm

³
s, Zs + c4

¯̄̄̄
X
1/m0

j
s −Xs

¯̄̄̄
,Xs

´
− Fm

³
s, Zs − c4

¯̄̄̄
X
1/m0

j
s −Xs

¯̄̄̄
,Xs

´i
Thus, by part 4 of Claim 2,

lim
j→∞

Aj
3 ≤ lim

j→∞

X
m∈{1,2}

Z K

y=−K

Z t

s=0

1

Ã
Hm(s, y,Xs)− Zs

∈
h
0, 2c4

¯̄̄̄
X
1/m0

j
s −Xs

¯̄̄̄´ ! dsdy

Since Brownian motion has a jointly continuous local time ( [30, p. 310]),

lim
j→∞

Z t

s=0

1
³
−Zs ∈

h
0, 2c4

¯̄̄̄
X
1/m0

j
s −Xs

¯̄̄̄´´
ds = 0

almost surely. But by part 2 of Claim 2, for m = 1, 2, Hm(s, y,Xs) is Lipschitz
in s with constant c04 = c4(1 + K). Thus, by the Girsanov Theorem [28], the
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law of Hm(s, y,Xs) − Zs is mutually absolutely continuous with the law of −Zs.
Consequently, limj→∞Aj

3 = 0 almost surely. This proves existence.
We now prove uniqueness. Let X+

t and X−
t be the maximal and minimal solu-

tions to (41). Define Yt = X+
t − X−

t . By part 3 of Claim 2, for some constant
c,

Yt ≤ c

Z t

s=0

Ysds+
X

m∈{1,2}

Z t

s=0

£
Fm(s, Zs + c4Ys,X

−
s )− Fm(s, Zs − c4Ys,X

−
s )
¤
ds

(46)
so that by part 4,

Yt ≤ c

Z t

s=0

Ysds+
X

m∈{1,2}

Z K

y=−K

Z t

s=0

1(Hm(s, y,X−
s )− Zs ∈ [0, 2c4Ys])dy

Since Z has zero drift, the probability distribution over (Hm(s, y,X−
s )− Zs)s≥0

is the same as the probability distribution over (Zs +Hm(s, y,X−
s ))s≥0. Hence,

if there is a positive probability that Yt > 0, then this also occurs with positive
probability if Yt instead satisfies

Yt ≤ c

Z t

s=0

Ysds+
X

m∈{1,2}

Z K

y=−K

Z t

s=0

1(Zs+H
m(s, y,X−

s ) ∈ [0, c4Ys])dsdy (47)

(redefining c4 to be twice the old c4.) We will show that if (47) holds, Yt is identi-
cally zero for all t ∈ [0, 1/2 ∧ΥN ] almost surely.

Let (Ω,z, P z) be the probability space associated with Z when Z0 = z, and let
(zu)u≥0 be the filtration generated by Z.34 Since each Hm(s, y,X−

s ) has paths that
are Lipschitz-continuous in s with constant c04, by the Girsanov theorem (Øksendal
[28]), for any u ∈ [0, t], and for any positive A and α,

Ezu

∙Z t

s=u

1(Zs ∈ [0, Asα])ds
¸
= Ezu

∙Z t

s=u

1

µ
Zs +Hm(s, y,X−

s )
∈ [0, Asα]

¶
·My

s ds

¸
(48)

where Ezu denotes the expectation conditional on zu and

My
s = exp

⎛⎝ −
R s
v=u

h
dHm(v,y,X−v )

dv

i
dZv

−1
2

R s
v=u

h
dHm(v,y,X−v )

dv

i2
dv

⎞⎠ ≥ c5 exp

µ
−
Z s

v=u

∙
dHm(v, y,X−

v )

dv

¸
dZv

¶

34Ω is the set of possible sample paths (Zt)t≥0; z is the σ-algebra of measurable subsets of Ω;
for any S ∈ z and constant z, P z(S) is the probability, conditional on Z0 = z, that the sample path
will be in S. zu is the σ-algebra that contains information about Zv for v ≤ u but no information
about Zv for v > u.
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where c5 = exp
¡
−1
4
[c04]

2¢ (as s ≤ 1
2

and
¯̄̄̄
dHm(v,y,X−v )

dv

¯̄̄̄
≤ c04 = c4(1 +K)). ButZ s

v=u

∙
dHm(v, y,X−

v )

dv

¸
dZv =

Z s

v=u

∙
dHm(v, y,X−

v )

dv

¸
dBh(v)

=

Z h(s)

v=h(u)

⎡⎣dHm
³
h−1(v), y,X−

h−1(v)

´
dh−1(v)

⎤⎦ dBv

Hence, for any λ > 0,

Przu

µ
min
s∈[u,t]

½
−
Z s

v=u

∙
dHm(v, y,X−

v )

dv

¸
dZv

¾
< −λ

¶

= Przu

⎛⎝min
s∈[u,t]

⎧⎨⎩−
Z h(s)

v=h(u)

⎡⎣dHm
³
h−1(v), y,X−

h−1(v)

´
dh−1(v)

⎤⎦ dBv

⎫⎬⎭ < −λ

⎞⎠
≤ Przu

⎛⎝max
s∈[u,t]

¯̄̄̄̄̄
¯̄̄Z h(s)

v=h(u)

⎡⎣dHm
³
h−1(v), y,X−

h−1(v)

´
dh−1(v)

⎤⎦ dBv

¯̄̄̄̄̄
¯̄̄ > λ

⎞⎠
where Przu is the probability conditional on zu. The integral in the last line is a
martingale and Bv is a Brownian motion with zero drift and unit variance. Hence,
by Doob’s martingale inequality (Øksendal [28, p. 33]), the last line is no greater
than

Ezu

"R h(s)
v=h(u)

∙
dHm

³
h−1(v),y,X−

h−1(v)

´
dh−1(v)

¸2
dv

#
λ2

≤ (c
0
4)
2 h(s)

λ2
≤ c6

λ2

where c6 = c23h(1/2) (as s ≤ 1
2

and h0 > 0). Thus, for any sufficiently small
m ∈ (0, c5),

Przu( min
s∈[u,t]

My
s < m) ≤ Przu

µ
min
s∈[u,t]

½
exp

µ
−
Z s

v=u

∙
dHm(v, y,X−

v )

dv

¸
dZv

¶
<

m

c5

¾¶
≤ Przu

µ
min
s∈[u,t]

½Z s

v=u

∙
−dH

m(v, y,X−
v )

dv

¸
dZv

¾
< − ln

³c5
m

´¶
≤ c6

ln
¡
c5
m

¢2 , n(m)

where n(m) is independent of y and u and limm→0 n(m) = 0. Thus, for any
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m > 0,

Ezu

∙Z K

y=−K

Z t

s=u

1(Zs +Hm(s, y,X−
s ) ∈ [0, Asα])My

s ds dy

¸
≥ m(1− n(m))Ezu

∙Z K

y=−K

Z t

s=u

1(Zs +Hm(s, y,X−
s ) ∈ [0, Asα]) ds dy

¸
= m(1− n(m))Ezu [Ct − Cu]

where Ct =
R K
y=−K

R t
s=0
1(Zs +Hm(s, y,X−

s ) ∈ [0, Asα]) ds dy. Hence, by (48),
there is a positive constant c7, independent of A, α, and u, such that

Ezu [Ct − Cu] ≤ c7 ·Ezu
∙Z t

s=u

1(Zs ∈ [0, Asα])ds
¸

Let
¡bzs

¢
s≥0 be the filtration generated by B where Zt = Bh(t). Since B is a

Brownian motion, there is a constant c8 such that

Przs(Zt ∈ dy | ) = Prbzs(Bh(t) ∈ dy) ≤ c8
(h(t)− h(s))1/2

dy ≤
c8/ρ

1/2

(t− s)1/2
dy

(49)
Using this fact, the argument of Lemma 2.14 in Bass and Burdzy [1] implies that
there exist constants c9 and c10, independent of A and α, such that

Pr(Ct > λ) ≤ c9 exp(−c10λα1/8/(Atα+1/4))

Using this fact, the argument of Lemma 2.15 of Bass and Burdzy implies that given
ζ > 0 there exist constants c11 and c12 such that if α ≥ 1, A,A0 > 0, A0/A > ζ, and
A1 = α+ 1/8, then Pr(Ct ≥ A0t

A1 for some t ≤ 1/2) ≤ c11 exp(−c12A0α1/8/A).
Armed with this result, it is straightforward to adapt the argument in Lemma 2.17
of Bass and Burdzy to show that Pr(Yt 6= 0 for some t ∈ [0, 1/2 ∧ ΥN ]) = 0. By
induction on t and letting N → ∞, we then have Yt = 0 for all t almost surely.
This proves uniqueness. Q.E.D.Lemma 6

The following two lemmas prove important comparative statics properties of
the solution to (40).

LEMMA 7 1. Suppose that (X1
t )t∈[0,Υ] and (X2

t )t∈[0,Υ] are Lipschitz solutions
to equation (40) corresponding to pairs of functions (F 1

1 , F
2
1 ) and (F 1

2 , F
2
2 )

that satisfy the properties of (F 1
1 , F

2
1 ) in Lemma 6 and such that Fm

1 (t, z, x) ≥
Fm
2 (t, z, x) form = 1, 2 and for all (t, z, x). Suppose the solutions (X1

t )t∈[0,Υ]
and (X2

t )t∈[0,Υ] are defined relative to the same Brownian motion sample
path, (Zt)t∈[0,Υ]. Assume also that X1

0 ≥ X2
0 . Then X1

t ≥ X2
t for all

t ∈ [0,Υ] almost surely.
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2. Suppose, in addition, that for any (t, x) andm = 1, 2, Fm
1 (t, z, x) = Fm

2 (t, z, x)
at all but a measure zero set of z’s. If X1

0 = X2
0 , then X1

t = X2
t for all

t ∈ [0,Υ], almost surely.

Proof of LEMMA 7. Part 1: Let Yt = max{0,X2
t − X1

t } and F 12
1 (s, z, x) =

F 1
1 (s, z, x) + F 2

1 (s, z, x). Then there is a c > 0 such that

Ẏt =
£
Γ(t, Zt,X

2
t |F2)− Γ(t, Zt, X

1
t |F1)

¤
1(X2

t ≥ X1
t )

≤
£
Γ(t, Zt, X

2
t |F1)− Γ(t, Zt, X

1
t |F1)

¤
1(X2

t ≥ X1
t )

≤ cYt +
X

m∈{1,2}

∙
Fm
1 (t, Zt + c4(X

2
t −X1

t ),X
1
t )

−Fm
1 (t, Zt − c4(X

2
t −X1

t ),X
1
t )

¸
1(X2

t ≥ X1
t )

= cYt +
X

m∈{1,2}

£
Fm
1

¡
t, Zt + c4Yt, X

1
t

¢
− Fm

1

¡
t, Zt − c4Yt, X

1
t

¢¤
(The second inequality follows from part 3 of Claim 2.) This implies that equation
(46) holds for this Yt, with X1

s substituted for X−
s and Fm

1 substituted for Fm. The
argument following equation (46) now applies verbatim to show that Yt is identi-
cally zero.

Part 2: we will prove that¯̄̄̄̄̄Z t

s=0

Γ(s, Zs, X
1
s |F1)ds−

Z t

s=0

Γ(s, Zs, X
1
s |F2)ds

¯̄̄̄̄̄
= 0 (50)

This implies that X1
t is a solution to (40) defined relative to F2; by uniqueness,

X1
t = X2

t . To see (50), consider any (s, z, x); for m = 1, 2, and n = 1, 2, let
Fm
n (x) represent Fm

n (s, z, x). We have

0 ≤ Γ(s, z, x|F1)− Γ(s, z, x|F2)
= F 2

1 (x)(1− x) + F 1
1 (x)x− F 2

2 (x)(1− x)− F 1
2 (x)x

≤ F 2
1 (x)− F 2

2 (x) + F 1
1 (x)− F 1

2 (x)

Thus,

0 ≤
X

m∈{1,2}

Z t

s=0

£
Fm
1 (s, Zs, X

1
s )− Fm

2 (s, Zs, X
1
s )
¤
ds

As in the proof of part 4 of Claim 2,Z t

s=0

£
Fm
1

¡
s, Zs, X

1
s

¢
− Fm

2

¡
s, Zs,X

1
s

¢¤
ds

=

Z t

s=0

Z K

y=−K

£
1(Fm

2 (s, Zs,X
1
s ) ≤ y)− 1(Fm

1 (s, Zs,X
1
s ) ≤ y)

¤
dyds
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Let Hm
j (t, y, x) = inf{z ∈ [−N,N ] : Fm

j (t, z, x) > y} for j = 1, 2. By part
5 of Claim 2, Hm

1 and Hm
2 coincide everywhere. Moreover, Fm

j (s, Zs, X
1
s ) ≤ y

implies Hm
j (s, y,X

1
s ) ≥ Zs and Fm

j (s, Zs,X
1
s ) > y implies Hm

j (s, y,X
1
s ) ≤ Zs.

So 1(Fm
2 (s, Zs,X

1
s ) ≤ y) − 1(Fm

1 (s, Zs,X
1
s ) ≤ y) 6= 0 only if Hm

2 (s, y,X
1
s ) ≥

Zs ≥ Hm
1 (s, y,X

1
s ). Since Hm

1 = Hm
2 , this implies Zs = Hm

1 (s, y,X
1
s ). As

Hm
1 (s, y,X

1
s ) has paths that are Lipschitz-continuous in s,Z K

y=−K

Z t

s=0

£
1(Fm

2 (s, Zs,X
1
s ) ≤ y)− 1(Fm

1 (s, Zs,X
1
s ) ≤ y)

¤
dsdy

≤
Z K

y=−K

Z t

s=0

1(Zs = Hm
1 (s, y,X

1
s ))dsdy =

Z K

y=−K
0dy = 0 a.s.

by the Girsanov theorem (Øksendal [28]). Q.E.DLEMMA 7

LEMMA 8 Suppose that (Xt)t∈[0,Υ] is the unique Lipschitz solution of (40), where
F 1, F 2 satisfy the assumptions of Lemma 6. Let eXz,x

t be the solution to (40) starting
from eXz,x

0 = x0 + x and corresponding to eZt = Zt + z. (F 1, F 2 remain the same
in parts 1 and 2 of this lemma).

1. If z, x > 0 then eXz,0
t ≥ Xt and eX0,x

t ≥ Xt for all t ∈ [0,Υ] almost surely.

2. As z and x go to 0, the processes eXz,x
t converge almost surely toXt, uniformly

on [0,Υ].

3. Suppose that for n = 1, 2, . . ., (F 1
n , F

2
n) have the properties of (F 1, F 2) in

Lemma 6, for the same constant c2. Fix some x0 and z0. For each n, letbXn
t be the solution to (40) on t ∈ [0,Υ] with (F 1

n , F
2
n) appearing in place of

(F 1, F 2). If limn→∞ Fm
n = Fm for m = 1, 2, then the solutions bXn

t converge
to Xt, the solution of (40) corresponding to (F 1, F 2).

Proof of LEMMA 8. We will deduce part 1 from Lemma 7. For m = 1, 2, define
Fm bye eFm(t, Zt, Xt) = Fm(t, Zt + z,Xt) = Fm(t, eZt,Xt). Since eFm ≥ Fm,
Lemma 7 implies that eXz,0

t ≥ Xt. The assertion eX0,x
t ≥ Xt follows directly from

Lemma 7.
For part 2, take any sequence {(zn, xn)} such that zn → 0 and xn → 0 as n goes

to infinity. For a fixed t, there exists a subsequence {(znj , xnj)} such that X
znj ,xnj
t
e

converges. By extracting further subsequences and then using the diagonal method
we can obtain a subsequence {(z0n, x0n)} of the original sequence {(zn, xn)} such
that eXz0n,x

0
n

s converges to a limit X∗
s for every rational s > 0. The convergence is
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uniform on compact sets because all functions eXz0n,x
0
n

s are Lipschitz with constant
K. We see that X∗

s must be a solution to (40) by the following argument. LeteFm
n (t, z + zn, x) = Fm(t, z, x) and let Xn

s = eXz0n,x
0
n

s . For any n,¯̄̄̄̄̄
X∗

t −
µ
x0 +

Z t

s=0

Γ(s, Zs, X
∗
s |F )ds

¶¯̄̄̄̄̄
≤ An

1 +An
2 +An

3

where

An
1 =

¯̄̄̄̄̄
X∗

t −
µ
x0 +

Z t

s=0

Γ(s, Zs, X
n
s |Fn)ds

¶¯̄̄̄̄̄
An
2 =

¯̄̄̄̄̄Z t

s=0

Γ(s, Zs, X
n
s |Fn)ds−

Z t

s=0

Γ(s, Zs,X
∗
s |F )ds

¯̄̄̄̄̄
An
3 =

¯̄̄̄̄̄Z t

s=0

Γ(s, Zs, X
n
s |F )ds−

Z t

s=0

Γ(s, Zs,X
∗
s |F )ds

¯̄̄̄̄̄
Since An

1 = |X∗
t −Xn

t |, limn→∞An
1 = 0. Since Fn → F , limn→∞An

2 = 0. One
can prove that limn→∞An

3 = 0 by the same argument used to prove that Aj
3 → 0

in Lemma 6. By uniqueness, X∗
s = Xs for all s. Since the same is true for any

initial sequence {(zn, xn)}, we conclude that eXz,x
t converges to Xt almost surely,

uniformly on compact time intervals.
The proof of part 3 is completely analogous to that for part 2. One can show that

for every subsequence of Xn
t , there is a further subsequence which converges and,b

moreover, it converges to a solution of (40). The argument is finished by invoking
the uniqueness of the solution. Q.E.DLEMMA 8

The following two lemmas imply that if Fm(v, z, x) = fm(Φn−1(v, z, x), x) for
m = 1, 2, then (F 1, F 2) satisfies the assumptions of Lemma 6, so there is a unique
solution to (33).

LEMMA 9 1. The functions f1(y, x), f2(y, x), and π (y, x) are weakly in-
creasing in y and right-continuous in y.

2. For m = 1, 2, if y0 − y > η |x0 − x|, then fm(y0, x0) ≥ fm(y, x).

Proof of LEMMA 9. This is an easy consequence of Lemma 4.

LEMMA 10 For each n ≥ 0, including n =∞, and for all (t, z, x), and (t0, z0, x0),

(i) Φn(t, z, x) is strictly increasing in z;
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(ii) there is a constant c2, independent of n, such that if g(t, z) and g(t0, z0) are
both in [w,w], z0 − z > c2(|x0 − x| + τ(t, t0)), and |x0 − x| ≥

³
ρ
ρ

´2
τ(t, t0),

then Φn(t0, z0, x0) > Φn(t, z, x) + η |x0 − x|.

(iii) Φn(t, z, x) is weakly decreasing in n;

(iv) for all ε > 0 there is a δ > 0, independent of (t, z, x), such that if

max{|dx| , |dt| , |dz|} < δ

then Φn(t0, z0, x0)− Φn(t, z, x) < ε.

Proof of LEMMA 10. We prove (i-iii) by induction. (iii) holds for n = 0 if we
define Φ−1 to be∞. By Lemma 3, for any n,

Φn(t, z, x) = E

Z ∞

v=0

exp

µ
−
Z v

s=0

(r + k1t+s + k2t+s)ds

¶£
Dt+v(Zt+v, Xt+v, k

1
t+v, k

2
t+v)

¤
dv

(51)
(The expectation is conditioned on (Zt,Xt) equalling (z, x).)

Let (bv)v≥0 be a fixed Brownian sample path with b0 = 0. We compare
Φn(t0, z0, x0) to Φn(t, z, x) path by path, so that the continuation path of Z from
time t (t0) on begins at z (z0) and its changes are given by (bv)v≥0 with time suit-
ably transformed. For the path starting at (t, z, x), let Zt+v = z + bh(t+v)−h(t); for
the path starting at (t0, z0, x0), let Z 0t0+v = z0 + bh(t0+v)−h(t0). Let dx = x0 − x,
dz = z0 − z, and dt = t0 − t. Let

D0
v = Dt0+φ(v,t,t0)

¡
Z 0t0+φ(v,t,t0), X

0
t0+φ(v,t,t0), k

10
t0+φ(v,t,t0), k

20
t0+φ(v,t,t0)

¢
Using the change of variables v = φ(bv, t, t0), and then replacing bv by v (noting
φ(0, t, t0) = 0), we obtain

Φn(t0, z0, x0)

= E

Z ∞

v=0

exp

µ
−
Z v

s=0

(r + k10t0+s + k20t0+s)ds

¶£
Dt0+v(Z

0
t0+v,X

0
t0+v, k

10
t0+v, k

20
t0+v)

¤
dv

= E

Z ∞

φ(bv,t,t0)=0 exp
Ã
−
Z φ(bv,t,t0)
s=0

(r + k10t0+s + k20t0+s)ds

!
D0bv · φ1(bv, t, t0)dbv

= E

Z ∞

v=0

exp

Ã
−
Z φ(v,t,t0)

s=0

(r + k10t0+s + k20t0+s)ds

!
D0

v · φ1(v, t, t0)dv

For small (dt, dz, dx), the choices
¡
k10t0+s, k

20
t0+s

¢
s≥0 and (k10t0+φ(s,t,t0), k

20
t0+φ(s,t,t0))s≥0

must give approximately the same expected payoffs to being in mode 1 and mode 2
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as
¡
k1t+s, k

2
t+s

¢
s≥0 by the envelope theorem. Thus, letting kt+v =

¡
k1t+v, k

2
t+v

¢
and

ςv = exp
¡
−
R v
s=0
(r + k1t+s + k2t+s)ds

¢
,

Φn(t0, z0, x0)− Φn(t, z, x)

= E

Z ∞

v=0

ζφ(v,t,t0) ·Dt0+φ(v,t,t0)

µ
Z 0t0+φ(v,t,t0),

X 0
t0+φ(v,t,t0), kt+v

¶
φ1(v, t, t

0)dv

−E

Z ∞

v=0

ζv ·Dt+v (Zt+v, Xt+v, kt+v) dv

to first order, by (51). By definition,

Z 0t0+φ(v,t,t0) = z0 + bh(t0+φ(v,t,t0))−h(t0) = z0 + bh(t+v)−h(t) = Zt+v + dz

Hence, Φn(t0, z0, x0)− Φn(t, z, x) = A1 +A2 +A3 where

A1 = E

Z ∞

v=0

ζφ(v,t,t0) ·Dt0+φ(v,t,t0)

µ
Z 0t0+φ(v,t,t0),

X 0
t0+φ(v,t,t0), kt+v

¶
φ1(v, t, t

0)dv

−E

Z ∞

v=0

ζv ·Dt+v

¡
Z 0t0+φ(v,t,t0), X

0
t0+φ(v,t,t0), kt+v

¢
dv

A2 = E

Z ∞

v=0

ζv ·
Ã

Dt+v

³
Zt+v + dz,X 0

t0+φ(v,t,t0), kt+v
´

−Dt+v (Zt+v + dz,Xt+v, kt+v)

!
dv

A3 = E

Z ∞

v=0

ζv · (Dt+v (Zt+v + dz,Xt+v, kt+v)−Dt+v (Zt+v, Xt+v, kt+v)) dv

Let |w| = max {|w| , |w|}. By (35), Lemmas 2 and 5, part 2 of Lemma 3, and
equation (30), there is a c > 0, independent of (t, t0, x, x0, z, z0), such that for small
enough |dt|, |A1| ≤ c |dt| if g(t, z) and g(t0, z0) are both in [w − λ, w + λ]. LetΥ be
a (strictly positive) lower bound on E

R∞
v=0

e−(r+2K)v1 (g(t+ v, Zt+v) ∈ [w,w]) dv
over all starting points g(t, Zt) ∈ [w,w]. By axioms A3 and A4 and equation (24),

A2 ≥
β

r
min
(bv)v≥0

½
0, min

v∈[0,T−t]

¡
X 0

t0+φ(v,t,t0) −Xt+v

¢¾
A3 ≥ αγΥdz

wheremin(bv)v≥0 denotes the minimum over all possible paths (bv)v≥0. Thus,

A2 +A3 ≥ αγΥdz +
β

r
min
(bv)v≥0

½
0, min

v∈[0,T−t]

¡
X 0

t0+φ(v,t,t0) −Xt+v

¢¾
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By the above inequalities,

Φn(t0, z0, x0)− Φn(t, z, x)

≥ αγΥdz +
β

r
min
(bv)v≥0

½
0, min

v∈[0,T−t]

¡
X 0

t0+φ(v,t,t0) −Xt+v

¢¾
− c|dt|

For n = 0, X and X 0 are identically zero for any dx, so Φ0(t, z, x) is strictly
increasing in z and independent of x (part i). Moreover, since |dt| ≤ τ(t, t0),

1

αγΥ
[Φn(t0, z0, x0)− Φn(t, z, x)]

≥ dz − c

αγΥ
τ(t, t0) +

β

rαγΥ
min
(bv)v≥0

½
0,min

v≥0

¡
X 0

t0+φ(v,t,t0) −Xt+v

¢¾
(52)

Let c2 = c
αγΥ

+ 1
αγΥ

¡
η + β

r

¢
. To prove (ii), it remains to show that if dz ≥

c2 (τ(t, t
0) + |dx|) and |dx| ≥

³
ρ
ρ

´2
τ(t, t0) thenmin

n
0,minv≥0

³
X 0

t0+φ(v,t,t0) −Xt+v

´o
is not less than − |dx| since then

1

αγΥ
[Φn(t0, z0, x0)− Φn(t, z, x)− η|dx|]

≥ dz − c

αγΥ
τ(t, t0)− 1

αγΥ

µ
η +

β

r

¶
|dx|

> dz − c2 [τ(t, t
0) + |dx|] > 0

This is trivial for the case n = 0 since X and X 0 are identically zero for any
dx. Let dXt+v = X 0

t0+φ(v,t,t0) −Xt+v. For small enough ε > 0, we will show that
d (dXt+v) /dv ≥ 0whenever dXt+v ∈ [− |dx|−ε,− |dx|]. Since X has continuous
paths, this will imply dXt+v ≥ − |dx|, so dXt+v ∧ 0 ≥ −|dx|, proving (ii).

To see why d (dXt+v) /dv ≥ 0 in this range, recall that by Lemma 5, τ(t +
v, t0 + φ(v, t, t0)) ≤ τ(t, t0), so dz > c2(|dx| + τ(t + v, t0 + φ(v, t, t0))). Thus, if
dXt+v ∈ [|dx|−ε, |dx|] for small enough ε, dz > c2(dXt+v+τ(t+v, t

0+φ(v, t, t0)))

and
³
ρ
ρ

´2
τ(t + v, t0 + φ(v, t, t0)) ≤

³
ρ
ρ

´2
τ(t, t0) ≤ |dXt+v|. By the induction

hypothesis,

η |dXt+v| < mv

, Φn−1 ¡t0 + φ(v, t, t0), Zt+v + dz,X 0
t0+φ(v,t,t0)

¢
− Φn−1 (t+ v, Zt+v, Xt+v)
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Define bx0 = Xt+v, bx = bx0+dXt+v, y0 = Φn−1 (t+ v, Zt+v, Xt+v), and y = y0+mv.
Recall that f2(y, bx) = maxBR2(y, bx) and f1(y, bx) = −minBR1(y, bx),

d (dXt+v) /dv = π(y, bx)φ1(v, t, t0)− π(y0, bx0)
=

µ
f2(y, bx) · (1− bx)
+f1(y, bx) · bx

¶
(φ1(v, t, t

0)− 1)

+ f2(y, bx) · (1− bx)− f2(y0, bx0) · (1− bx0)
+ f1(y, bx) · bx− f1(y0, bx0) · bx0
≥
µ

f2(y, bx) · (1− bx)
+f1(y, bx) · bx

¶
(φ1(v, t, t

0)− 1)

−
¡
f2(y, bx)− f1(y, bx)¢ dXt+v

where the inequality follows from part 2 of Lemma 9. This is nonnegative if
|φ1(v, t, t0)− 1| ≤ |dx| since by hypothesis dXt+v ≤ − |dx|. By Lemma 5,
|φ1(v, t, t0)− 1| ≤

³
ρ
ρ

´2
|dt| ≤

³
ρ
ρ

´2
τ(t, t0) ≤ |dx|. This proves that d (dXt+v) /dv ≥

0 and hence (ii) holds for finite n > 0.
Now consider (i) for finite n > 0. The relative payoff of being in mode 1,

Φn(t, z, x), is computed assuming players believe that, in the future, Ẋv will equal
f2(Φn−1(v, Zv,Xv),Xv)(1 − Xv) + f1(Φn−1(v, Zv,Xv),Xv)Xv (equation (33)).
By induction and Lemma 9, for m = 1, 2, fm(Φn−1(t, z, x), x) has the properties
of Fm(t, z, x) assumed in Lemma 8. Hence, if dt = 0 and both dx and dz are
nonnegative, then X 0

t0+φ(v,t,t0) = X 0
t+v ≥ Xt+v. By (52) and the envelope theorem,

Φn(t, z, x) is strictly increasing in z and weakly increasing in x, proving (i) for
finite n > 0.

For (iii) with finite n > 0, we know by induction thatΦn−1(t, z, x) ≤ Φn−2(t, z, x)
and that for m = 1, 2, both fm(Φn−1(t, z, x), x) and fm(Φn−2(t, z, x), x) satisfy
the assumptions of Fm(t, z, x) in Lemma 6. Hence, Φn(t, z, x) ≤ Φn−1(t, z, x) by
Lemma 7.35

For the case n = ∞, fm(Φ∞N (t, z, x), x) = fm(limn→∞Φn(t, z, x), x) satisfies
the properties of Fm in Lemma 6 as each fm(Φn(t, z, x), x) does for n < ∞, and
these properties clearly hold in the limit. In particular, c2 is independent of n, so if

z0 − z > c2(|x0 − x|+ τ(t, t0))

and |x0 − x| ≥
³
ρ
ρ

´2
τ(t, t0) then Φ∞N (t

0, z0, x0) ≥ Φ∞N (t, z, x) + η |dx|, whence
fm(Φ∞N (t

0, z0, x0), x0) ≥ fm(Φ∞N (t, z, x), x
0) by Lemma 9. Thus, by Lemma 8, if

35Evaluate them path-by-path in Z and use the envelope theorem to show that a lower X must
lower the relative payoff to playing R; then apply Lemma 7.
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dt = 0 and both dx and dz are nonnegative, then dXt+v ≥ 0 for all v ≥ 0. This
shows (i). For (ii), if z0−z > c2(|dx|+ τ(t, t0)) and |dx| ≥

³
ρ
ρ

´2
τ(t, t0) then there

is an ε > 0 such that (z0 − ε)− z > c2(|dx|+ τ(t, t0)), whence Φn(t0, z0 − ε, x0) >
Φn(t, z, x) + η |dx| for all n, so Φ∞N (t

0, z0 − ε, x0) ≥ Φ∞N (t, z, x) + η |dx|; by part
(i), Φ∞N (t0, z0, x0) > Φ∞N (t, z, x) + η |dx|.

We now show (iv) for n = 0, 1, . . .. Consider the decomposition used above:

Φn(t0, z0, x0)− Φn(t, z, x) = A1 +A2 +A3

≤ c|dt|+A2 + αγ |dz| /r

Moreover,

A2 ≤ βE

Z T

v=0

e−rv |dXt+v| dv

Define Fm(t, z, x) = fm(Φn−1(t, z, x), x) and Γ(t, z, x) = F 2(t, z, x)(1−x)+
F 1(t, z, x)x. Note that

d (dXt+v) /dv

= Γ
¡
t0 + φ(v, t, t0), Zt+v + dz,X 0

t0+φ(v,t,t0)

¢
φ1(v, t, t

0)

− Γ (t+ v, Zt+v,Xt+v)

= B1 +B2 +B3

where

B1 = Γ
¡
t0 + φ(v, t, t0), Zt+v + dz,X 0

t0+φ(v,t,t0)

¢
[φ1(v, t, t

0)− 1]
B2 = Γ

¡
t0 + φ(v, t, t0), Zt+v + dz,X 0

t0+φ(v,t,t0)

¢
− Γ

¡
t+ v, Zt+v,X

0
t0+φ(v,t,t0)

¢
B3 = Γ

¡
t+ v, Zt+v, X

0
t0+φ(v,t,t0)

¢
− Γ (t+ v, Zt+v, Xt+v)

Assume WLOG that dXt+v ≥ 0. (A symmetric argument holds for dXt+v ≤ 0.)
By Lemma 5, |B1| ≤ K

³
ρ
ρ

´2
|dt|. Recall that F 1 ≤ 0 and F 2 ≥ 0. Thus, by (45)

and part 3 of Claim 2,

B2 +B3 ≤
X

m∈{1,2}

[Fm(t+ v, Zt+v + αv, Xt+v)− Fm(t+ v, Zt+v − αv, Xt+v)]

where αv = |dz|+ c4
³
ρ
ρ
|dt|+ |dXt+v|

´
. By part 4 of Claim 2,

d

dv
(dXt+v) ≤ K

µ
ρ

ρ

¶2
|dt|+

X
m∈{1,2}

Z K

y=−K
1 (Hm(t+ v, y,Xt+v)− Zt+v ∈ [−αv, αv]) dy

(53)
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and thus

dXt+v ≤ dx+K

µ
ρ

ρ

¶2
|dt| v+

Z v

s=0

X
m∈{1,2}

Z K

y=−K
1

µ
Hm(t+ s, y,Xt+s)− Zt+s

∈ [−αs, αs]

¶
dyds

(54)
We now use the following mathematical result.

PROPOSITION 1 Let Bt be a Brownian motion and let Zt = Bh(t) where h :
<+ → <+ and there are constants ρ ≥ ρ > 0 such that for all t > t0, h(t)−h(t0) ∈£
ρ(t− t0), ρ(t− t0)

¤
and |h0(t)− h0(t0)| ≤ ρ |t− t0|. Let Xt be a process adapted

to Zt with Lipschitz paths. Let a0, a1, a2 be nonnegative and let K, n, q, r be
strictly positive constants. Consider another process Y ≥ 0 where Y0 = a0 and

Yt − Y0 ≤ a1t+

Z t

s=0

Z K

w=−K
1

µ
H(s, w,Xs)− Zs ∈

[−a2 − q(a1 + Ys), a2 + q(a1 + Ys)]

¶
dwds

(55)
where H : <+ × [−K,K] × [0, 1] → [−n, n] is Lipschitz in s and Xs and weakly
increasing in w. Then there is a function f such that for any Y satisfying (55),
E
R∞
t=0

e−rtYtdt ≤ f(a0, a1, a2), and such that for all ε > 0 there is a δ > 0 such
that if max{a0, a1, a2} < δ then f(a0, a1, a2) < ε.

Proof of Proposition 1. We make use of the following Lemma:

LEMMA 11 For every λ < ∞ and K1 > 0, there exists a stopping time T > 0,
such that for every Lipschitz function with constant λ and every ε > 0,Z T

0

1(f(s)−ε,f(s)+ε)(Bs)ds ≤ K1ε.

Proof of Lemma 11. For a Lipschitz function f(t), we define the local time Lf
t of

Bt on f by the formula

Lf
t = lim

ε→0

1

2ε

Z t

0

1(f(s)−ε,f(s)+ε)(Bs)ds.

We will write Lε
t if f(t) ≡ ε. It is well known that there exists a version of Lε

t

which is jointly continuous in ε and t, and, moreover, for every ε > 0 and t ≥ 0,Z t

0

1(−ε,ε)(Bs)ds =

Z ε

−ε
Lx
t dx (56)
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Let eBt = Bt − f(t) and

eLf
t = lim

ε→0

1

2ε

Z t

0

1(f(s)−ε,f(s)+ε)( eBs)ds.

For a fixed Lipschitz function f , the process eBt has a distribution mutually ab-
solutely continuous with the distribution of the Brownian motion, so (56) applies to
Bt, i.e.,e Z t

0

1(−ε,ε)( eBs)ds =

Z ε

−ε
eLx
t dx.

This is equivalent to Z t

0

1(f(s)−ε,f(s)+ε)(Bs)ds =

Z ε

−ε
Lf+x
t dx.

The last formula holds for a fixed f , a.s. for all ε > 0 and t ≥ 0. Let F be
a countable family of Lipschitz functions with constant λ which is dense in the
supremum norm in the space of all Lipschitz functions with constant λ. Then the
last formula holds a.s. for all f ∈ F , ε > 0 and t ≥ 0.

By Theorem 3.6 and Remark 3.7 of Bass and Burdzy [2], a.s., the function
(f, t)→ Lf

t is jointly continuous if f ranges over Lipschitz functions with constant
λ and it is bounded for every fixed t <∞. Fix some t and then fix an ω for which
both statements are true. Take any Lipschitz function g(t) with constant λ, fix some
ε > 0, and consider an arbitrarily small δ > 0. Let {fn} be a sequence of functions
in F which converges uniformly to g. Then for sufficiently large n,Z t

0

1(g(s)−ε,g(s)+ε)(Bs)ds ≤
Z t

0

1(fn(s)−ε−δ,fn(s)+ε+δ)(Bs)ds =

Z ε+δ

−ε−δ
Lfn+x
t dx.

By the continuity of f → Lf
t and dominated convergence, the last integral con-

verges to
R ε+δ
−ε−δ L

g+x
t dx, so we see thatZ t

0

1(g(s)−ε,g(s)+ε)(Bs)ds ≤
Z ε+δ

−ε−δ
Lg+x
t dx.

Since δ is arbitrarily small,Z t

0

1(g(s)−ε,g(s)+ε)(Bs)ds ≤
Z ε

−ε
Lg+x
t dx.

The lower bound can be proved analogously and so we obtain a.s. simultaneously
for all Lipschitz functions g with constant λ, all ε > 0 and t ≥ 0,Z t

0

1(g(s)−ε,g(s)+ε)(Bs)ds =

Z ε

−ε
Lg+x
t dx (57)
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Recall that for a fixed t, Mt = supf L
f
t < ∞ where f ranges over Lipschitz func-

tions with constant λ. This and (57) imply thatZ t

0

1(g(s)−ε,g(s)+ε)(Bs)ds ≤ 2Mtε (58)

It follows from the joint continuity of (f, t) → Lf
t that Mt → 0 as t → 0. Hence,

T = inf{t ≥ 0 :Mt ≥ K1/2} > 0. This and (58) prove the lemma. Q.E.D.Lemma 11
We now complete the proof of Proposition 1.
Step 1. Let α(t) be the inverse of h(t), i.e., α(t) = inf{s ≥ 0 : h(s) ≥ t}. Then

(55) is equivalent to

Yt − Y0

≤ a1t

+

Z K

w=−K

Z h(t)

s=0

1

µ
H(α(s), w,Xα(s))− Zα(s) ∈

[−a2 − q(a1 + Yα(s)), a2 + q(a1 + Yα(s))]

¶
α0(s)dsdw

Consider a processes bYt with bY0 = Y0 = a0, defined by

bYt − bY0
= a1t

+

Z K

w=−K

Z h(t)

s=0

1

µ
H(α(s), w,Xα(s))−Bs ∈

[−a2 − q(a1 + Yα(s)), a2 + q(a1 + Yα(s))]

¶
α0(s)dsdw

Step 2. Fix an arbitrarily large t0 < ∞. We will show that Yt converges to 0
on [0, t0] a.s., as a0, a1 and a2 go to 0. Since Yt is monotone, the convergence is
necessarily uniform.

It follows from the assumptions on h that α0(s) ≤ 1/ρ.
For every fixed w, the process s → H(s, w,Xα(s)) has Lipschitz trajectories

with some constant λ. We will apply Lemma 1 with this constant λ and K1 =
ρ/(16Kq). Recall the random variable T from the proof of Lemma 1 and let T1 =
T , and for k ≥ 2,

Tk = inf{t ≥ Tk−1 : sup
f

Lf
t − Lf

Tk−1
≥ ρ/(32Kq)},

where f ranges over Lipschitz functions with constant λ. By the strong Markov
property, the random variables Tk−Tk−1 are i.i.d. so for some random but finite k0,
we have Tk0 > t0.
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Consider arbitrarily small ε > 0. We will assume without loss of generality that
K and q are larger than 1. Suppose that

a0 ≤ ε/(8Kq),

a1 ≤ min(ε/(32α(t0)Kq), ε/(8Kq)),

and a2 ≤ ε/(8K).

Let S = inf{s ≥ 0 : Yα(s) ≥ ε/(4Kq)}, U = min(S, T1, t0) and consider a processb
Yt withe Y0 = Y0 = a0, defined bye
eYt − eY0
= a1t

+

Z K

w=−K

Z min{U,h(t)}

s=0

1

µ
H(α(s), w,Xα(s))−Bs ∈

[−a2 − q(a1 + Yα(s)), a2 + q(a1 + Yα(s))]

¶
α0(s)dsdw

Our assumptions on aj’s imply that for s ≤ U ,

a2 + q(a1 + Yα(s)) ≤ a2 + q(a1 + bYα(s))
≤ ε/(8K) + q(min(ε/(32α(t0)Kq), ε/(8Kq)) + ε/(4Kq))

≤ ε/(2K)

Hence, using Lemma 1,Z min{U,h(t)}

s=0

1

µ
H(α(s), w,Xα(s))−Bs ∈

[−a2 − q(a1 + Yα(s)), a2 + q(a1 + Yα(s))]

¶
α0(s)ds

≤
Z min{U,h(t)}

s=0

1

µ
H(α(s), w,Xα(s))−Bs ∈
[−ε/(2K), ε/(2K)]

¶
α0(s)ds ≤ ε/(32K2q)

It follows that for t such that h(t) ≤ U ,

Yt ≤e eY0 + a1t+

Z K

w=−K
ε/(32K2q)dw

≤ ε/(8Kq) + α(t0)ε/(32α(t0)Kq) + ε/(16Kq) ≤ (7/32)ε/(Kq)

Note that bYt = eYt if h(t) ≤ U , i.e., t ≤ α(U). We will show that S ≥ U .
Suppose otherwise, i.e., S < U . Then bYα(S) = ε/(4Kq). This contradicts the
fact that bYα(S) = eYα(S) ≤ eYα(U) < (7/32)ε/(Kq). Hence, S ≥ U , and so for
t < min(T1, t0) we have Yt ≤ bYt = Yt ≤ (7/32)ε/(Kq) < ε. We conclude that bye
choosing sufficiently small aj’s, we can make Yt smaller than an arbitrary ε > 0 for
all t ≤ min(T1, t0).
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Note thatbYT1+t − bYT1
= a1t

+

Z h(T1+t)

s=h(T1)

Z K

w=−K
1

µ
H(α(s), w,Xα(s))−Bs ∈

[−a2 − q(a1 + Yα(s)), a2 + q(a1 + Yα(s))]

¶
α0(s)dwds

The strong Markov property allows us to apply the above argument to the function
Yt on the interval [T1, T2]. In other words, if aj’s are sufficiently small thenb Yt (andb
consequently Yt) is smaller than an arbitrary ε > 0 for all t ≤ min(T2, t0). An
inductive procedure allows us to extend the claim to all t ≤ t0.
Step 3. Fix an arbitrarily small δ > 0. Assume without loss of generality that
a1 < 1. Note that for all t ≥ 0,

Yt − Y0 ≤ a1t+ 2Kt ≤ (2K + 1)t, (59)

and so
E

Z ∞

0

e−rtYtdt ≤
Z ∞

0

e−rt(2K + 1)tdt <∞.

Suppose that t0 is so large thatZ ∞

t0

e−rt(2K + 1)tdt < δ/2.

We have shown in Step 1 that for any sequence of parameters (an0 , an1 , an2) con-
verging to (0, 0, 0), the corresponding processes Y n

t converge uniformly to zero on
[0, t0], a.s. In view of (59), we can apply the bounded convergence theorem to see
that

lim
n→∞

E

Z t0

0

e−rtY n
t dt = 0.

For sufficiently large n, E
R t0
0
e−rtY n

t dt < δ/2 and soE
R∞
0

e−rtY n
t dt < δ. Q.E.D.Proposition 1.

We apply Proposition 1 by letting Yv = dXt+v, a0 = dx, a1 = max
½
c4

ρ
ρ
,K

³
ρ
ρ

´2¾
|dt|,

a2 = |dz|, and q = c4. Thus equation (55) corresponds to (54), implying that for
all ε > 0 there is a δ > 0 such that if max{|dx| , |dt| , |dz|} < δ then A2 < ε.
Thus, for all ε > 0 there is a δ > 0 such that if max{|dx| , |dt| , |dz|} < δ then
Φn(t0, z0, x0)− Φn(t, z, x) < ε. Q.E.D.Lemma 10

By Lemma 9 and part (iii) of Lemma 10,

Ẋv ≤ lim
n→∞

π(Φn−1(v, Zv,Xv),Xv) = π(Φ∞(v, Zv,Xv),Xv) (60)
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Moreover, Ẋv = π(Φ∞(v, Zv,Xv),Xv) is an equilibrium: if Ẋv is expected to
equal π(Φ∞(v, Zv, Xv), Xv) for all v ≥ t, players’ best responses lead Ẋt to equal
π(Φ∞(t, Zt, Xt),Xt). The reasoning is as follows. Let

Ẋn
v = π(Φn−1(v, Zv,Xv),Xv)

= f1(Φn−1(v, Zv, Xv))(1−Xv) + f2(Φn−1(v, Zv,Xv))Xv

By Lemmas 9 and 10, for all n and for a = 1, 2, fa(Φn−1(v, Zv,Xv)) has the
properties of F a assumed in Lemmas 6-8, so for any path (Zv)v≥t there is a unique
Lipschitz solution (Xn

v )v≥t to this dynamical system.36 By Lemmas 9 and part
(iii) of 10, limn→∞ fa(Φn(v, Zv,Xv)) = fa(Φ∞(v, Zv, Xv)) for a = 1, 2. Let
X∞

v = limn→∞Xn
v . By part 3 of Lemma 8, (X∞

v )v≥t is the unique solution to
Ẋv = π(Φ∞(v, Zv,Xv),Xv). This implies that (X∞

v )v≥t is a best response when
the relative value of being in mode 1 for any (v, Zv,Xv) is Φ∞(v, Zv,Xv). It
remains to show that Φ∞(t, Zt,Xt) is the relative value of being in mode 1 if for any
(Zv)v≥t players expect (X∞

v )v≥t. By the envelope theorem and (26), the value of
being in mode 1 is a continuous function of the path of X . But X∞

v = limn→∞Xn
v ,

so Φ∞(t, Zt,Xt) = limn→∞Φn(t, Zt,Xt) must be the relative value of being in
mode 1 when X follows (X∞

v )v≥t.
This proves that Ẋt = π(Φ∞(t, Zt,Xt), Xt) is both an upper bound on Ẋt and

the equilibrium with the highest path of X for any path of Z. We now iterate from
below: we construct a growing sequence of lower bounds on Ẋt. Each lower bound
in the sequence is now some translation of π(Φ∞(t, Zt,Xt),Xt), the upper bound
on Ẋt. We will show that the limit of this sequence of lower bounds coincides with
the upper bound. This will imply that the equilibrium Ẋt = π(Φ∞(t, Zt,Xt), Xt)
is in fact the unique equilibrium of the model.

Since π(y, x) is right continuous in y (Lemma 9) and Φ∞(t, z, x) is nondecreas-
ing and continuous in z (Lemma 10), the upper bound on Ẋt, π(Φ∞(t, Zt,Xt), Xt),
is right continuous in Zt. Let eπ(y, x) = limε↓0 π(y − ε, x) be the the left contin-
uous (in y) version of π. By part (iv) of Lemma 10, eπ(Φ∞(t, Zt,Xt), Xt) is left
continuous in Zt; it is the left continuous version of the upper bound on Ẋt.

We iterate with translations of this eπ(Φ∞(t, Zt, Xt),Xt). Let λ0 > 0 be large
enough that regardless of their expectations for (Xv)v≥t, players at state (t, Zt, Xt)
must choose switching rates that yield a rate of change ofXt that is at least eπ(Φ∞(t, Zt−
λ0, Xt),Xt). There must be such a λ0 by the existence of dominance regions and
the assumption that the integral of the absolute drift terms is finite (

R∞
s=0
|νs| ds <

N2). To see this, consider the following three cases:

36Property 3 of lemma 6 holds by part (ii) of Lemma 10 since if g(t, z) /∈ [w,w], then
fa(Φn−1(t, z, x)) is locally constant.
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1. Wt = g(t, Zt) > w: then players must choose switching rates that yield the
highest feasible Ẋt (which is K2

(1−Xt)), so the result is trivial;

2. Wt = g(t, Zt) < w: then players must choose switching rates that yield the
lowest feasible Ẋt (which is −K1

Xt); but g(t, Zt − λ0) < w, so at (t, Zt −
λ0,Xt) they must also do so as well;

3. Wt = g(t, Zt) ∈ [w,w]: then by equation (25) and since
R∞
s=0
|νs| ds < N2,

if λ0 > (w − w) eN2 then g(t, Zt − λ0) < w, so players at (t, Zt − λ0, Xt)

must choose switching rates that yield the lowest feasible Ẋt (= −K1
Xt);

thus, the property holds here as well.

Let λn be the infimum of constants λ such that if players believe that Ẋv will
be at least eπ(Φ∞(v, Zv − λn−1,Xv),Xv) for all v ≥ t, they must choose switching
rates that yield an Ẋt that is at least eπ(Φ∞(t, Zt − λ,Xt),Xt).

More precisely, let Φ∞λ (t, Zt,Xt) be the relative value of being in mode 1 on
the belief that, for all v ≥ t, Ẋv will equal the translation of the left continuous
(LC) version of the upper bound on Ẋv by λ, eπ(Φ∞(v, Zv − λ,Xv), Xv). (Note
that Φ∞0 (t, Zt, Xt) = Φ∞(t, Zt, Xt).) Let π(y, x) = minBR2(y, x)(1 − x) −
maxBR1(y, x)x: the lowest possible Ẋt when Xt = x and the relative value of
being in mode 1 is y. When the relative value of being in mode 1 is Φ∞λ (t, Zt, Xt),
the rate of change Ẋt must be at least π(Φ∞λ (t, Zt,Xt), Xt). For n ≥ 1, let λn
be the infimum of numbers λ such that, for all states (t, z, x), π(Φ∞λn−1(t, z, x), x)
(the lowest possible rate of change when others are expected to play according
to the translation of the LC version of the upper bound downward by λn−1) is at
least eπ(Φ∞(t, z − λ, x), x), the translation of the LC version of the upper bound
downward by λ.

By construction, λ0 ≥ λ1. By Lemma 7, for any path (Zv)v≥t, the solution
(Xv)v≥t to the equation Ẋv = π(Φ∞(v, Zv − λ,Xv),Xv) is weakly decreasing ine
λ; thus, by Lemma 3, λ1 ≥ λ2. Continuing by induction, λn−1 ≥ λn for all n. Let
λ∞ = limn→∞ λn. We know that Ẋt cannot lie above π(Φ∞(t, Zt,Xt),Xt) nor
below π(Φ∞(t, Zt − λ∞,Xt), Xt).e

We now show that λ∞ = 0. For any (t, z, x) and any λ, let Sλ(t, z, x) stand for
the situation in which players choose switching rates at state (t, Zt,Xt) = (t, z +
λ, x) and believe that Ẋv will equal eπ(Φ∞(v, Zv − λ,Xv),Xv) for all v ≥ t. The
initial rate of change of Xt in situation Sλ(t, z, x) is eπ(Φ∞(t, z, x), x), independent
of λ. The relative value of being in mode 1 in situation Sλ(t, z, x) is just Φ∞λ (t, z+
λ, x).

For any λ, λ0 ∈ [0, λ∞], the distribution of continuation paths (Zv − Zt)v≥t
in situations Sλ(t, z, x) and Sλ0(t, z, x) is the same since Zv = Bh(v) where h is
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a fixed function and B is a Brownian motion. And given a continuation path
of Z, the continuation path of X is determined by the same dynamical system:
Xt = x and Ẋv equals π(Φ∞(v, Zv − Zt + z,Xv), Xv), independent of λ. Bye
Lemmas 9 and parts (i) and (ii) of 10, for a = 1, 2, F a(v, Zv, Xv) = fa(Φ∞(v, Zv−
Zt+ z,Xv)) has the properties assumed in Lemma 6, so this dynamical system has
a unique solution for each λ. So for any λ, λ0 ∈ [0, λ∞], players in situations
Sλ(t, z, x) and Sλ0(t, z, x) expect the same distribution of continuation paths of
the state, (Zv − Zt,Xv − Xt)v≥t. Fix any sample path (zv, xv)v≥t; since Xt is
independent of λ, this sample path in situation λ has the same probability as the
sample path (zv + λ0 − λ, xv)v≥t in situation Sλ0(t, z, x). Hence, by Lemma 3 and
the envelope theorem,

d [Φ∞λ (t, z + λ, x)]

dλ
= E

Z ∞

v=t

exp

µ
−
Z v

s=t

(r + k1λs + k2λs )ds

¶
∂Dv(Zv,Xv, k

1
v, k

2
v)

∂Zv
dv

(61)
where k1λs and k2λs are the optimal switching rates in situation Sλ(t, z, x).37 By

Lemma 2 and equation (24), ∂Dv(Zv, Xv, k
1
v , k

2
v)/∂Zv > αe−N2 whenever g(v, Zv) ∈

[w,w]. Since k1λs + k2λs ≤ 2K,
d [Φ∞λ (t, z + λ, x)]

dλ
≥ αe−N2E

Z ∞

v=t

e−(r+2K)(v−t)1 (g(v, Zv) ∈ [w,w]) dv ≥ αe−N2Υ(c)

(62)
where c > 0 is is any constant such that g(t, z + λ) ∈ [w − c, w + c] and Υ(c) > 0
is the minimum expected discounted (at rate r + 2K) amount of time v > t that
g(v, Zv) is expected to spend in the non-dominance region [w,w], given that g(t, Zt)
is within c of this region (i.e., that g(t, Zt) ∈ [w − c, w + c]). Υ(c) is positive
because the variance and drift of W are bounded in absolute value. Importantly,
αe−N2Υ(c) is independent of (t, λ, z, x), as long as g(t, z + λ) ∈ [w − c, w + c].

By definition, λ∞ is the infimum of numbers λ such that for all states (t, z, x),
π(Φ∞λ∞(t, z, x), x) (the lowest possible rate of change at (t, z, x) when others are

37By the envelope theorem, equation (61) holds path-by-path (i.e., if (Zv−Zt)v≥t is held constant
as λ is varied); but the distribution of these paths is the same in all situations Sλ, so the equality
holds in expectation as well. The envelope theorem applies even though kRλs and kLλs need not be
continuous in λ. By construction, kRλs and kLλs are left continuous and monotonically increasing
in λ; hence, either λ is a point of continuity of kRλs and kLλs , in which case dλ can be chosen small
enough that kR,λ+εs and kL,λ+εs are close to kRλs and kLλs for ε ∈ [0, dλ], or else λ is a point of
right-discontinuity of either kRλs or kLλs , in which case dλ can be chosen small enough that kR,λ+εs

and kL,λ+εs are close to limε↓0 k
R,λ+ε
s and limε↓0 k

L,λ+ε
s , respectively, for ε ∈ [0, dλ]. Since the

sample path (Z)v≥t changes continuously as λ is varied, limε↓0 k
R,λ+ε
s and limε↓0 k

L,λ+ε
s must give

the same payoffs to R and L as kRλs and kLλs do at λ. Thus, (61) holds at points of discontinuity
in λ if we reinterpret kRλs and kLλs as limε↓0 k

R,λ+ε
s and limε↓0 k

L,λ+ε
s , respectively, which suffices

for equation (62).
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expected to play according to the translation of the left continuous version of the
upper bound on Ẋt downward by λ∞) is at least eπ(Φ∞(t, z − λ, x), x) (the trans-
lation of the left continuous version of the upper bound on Ẋt downward by λ).
Hence, for any ε > 0 there must be a state (tε, zε, xε) such that

π(Φ∞λ∞(t
ε, zε, xε), xε) < eπ(Φ∞(tε, zε − λ∞ + ε, xε), xε). (63)

Otherwise, the infimum could be no greater than λ∞ − ε, a contradiction. Since
(63) implies that players at (tε, zε, xε) may choose switching rates that differ from
those chosen at (tε, zε − λ∞ + ε, xε), either zε or zε − λ∞ + ε must lie in the
non-dominance region, so each can be no further than λ0 > λ∞ − ε away from the
non-dominance region.

We now show by contradiction (63) cannot hold for all ε > 0 unless λ∞ = 0.
By part (iv) of Lemma 10, for all ε0 > 0 there is a δ > 0, independent of (tε, zε, xε),
such that if ε < δ then Φ∞(tε, zε − λ∞ + ε, xε) < Φ∞(tε, zε − λ∞, x

ε) + ε. By
(62),

Φ∞λ∞(t
ε, zε, xε) = Φ∞λ∞(t

ε, (zε − λ∞) + λ∞, x
ε)

≥ Φ∞0 (t
ε, (zε − λ∞) + 0, x

ε) + αe−N2Υ(λ0)λ∞

= Φ∞(tε, zε − λ∞, x
ε) + αe−N2Υ(λ0)λ∞

≥ Φ∞(tε, zε − λ∞ + ε, xε)− ε+ αe−N2Υ(λ0)λ∞

For ε < αe−N2Υ(λ0)λ∞, Φ∞λ∞(t
ε, zε, xε) > Φ∞(tε, zε − λ∞ + ε, xε). By part 2 of

Lemma 4, this contradicts (63). This shows that λ∞ = 0.
Consequently, the equilibrium is unique wherever π(Φ∞(t, Zt, Xt),Xt) is con-

tinuous in Zt. By Lemma 9, π(Φ∞(t, z, x), x) is weakly increasing in z and
bounded, so for any (t, x), π(Φ∞(t, z, x), x) is almost everywhere continuous in
z. Hence, by part 2 of Lemma 7, with probability one the path of X that results
from any path of Z does not depend on whether players play according to the right
or left continuous version of π(Φ∞(t, Zt, Xt),Xt). (Intuitively, Ẋt is almost al-
ways the same and it is bounded, so Xt = X0 +

R t
v=0

Ẋvdv is the same in the two
cases.) Thus, for almost any path of Z, there is a unique equilibrium path of X.

Theorems 2-5 are immediate from the above arguments. The proof that the
equilibrium is time-independent with Brownian shocks is available from the corre-
sponding author on request. Q.E.D.Theorems 1-5

Proof of THEOREM 6. Fix a time t. Let k and k0 be switching rates chosen
in mode 2 at states (w, x) and (w0, x), where w > w0. Define y0 = V 1(w0, x) −
V 2(w0, x) and y = V 1(w, x)−V 2(w, x). By Relative Payoff Monotonicity, y > y0.
By the Switching Rate Rule, k0y0−c2(k0, x) ≥ ky0−c2(k, x) while ky−c2(k, x) ≥
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k0y− c2(k0, x). Subtracting, we obtain (k0− k)(y0− y) ≥ 0, so k0 ≥ k. The proof
for mode 1 is analogous. Q.E.D.Theorem 6

Proof of THEOREM 7. This follows directly from Theorem 6. Q.E.D.Theorem 7

Proof of THEOREM 8. For

k2(1−X)− k1X = C (64)

we must haveX = k2−C
k2+k1

. Given the interval from whichC is drawn, the expression
k2−C
k2+k1

must be strictly increasing in k2 and strictly decreasing in k1. This establishes
that X ≤ X, with equality only if K1 = K

1 and K2 = K
2. It also implies that

X is maximized subject to Ẋ = C when (k1, k2) =
³
K1,K

2
´

; substituting, its
maximum value is X . Analogously, its minimum value is X . Consequently, Ẋ
can feasibly equal C for all X in [X,X] ∩ [0, 1] as claimed. If X > X, then

Ẋ < k2(1−X)− k1X ≤ K
2
(1−X)−K1X = C

as claimed. The proof that Ẋ > C for all X < X is analogous. Q.E.D.Theorem 8

Proof of THEOREM 9. Let the set of optimal switching rates in mode m at state
(w, x) and time t be km(w, x, t). Now define max Ẋ(w, x, t) to be the maximum
rate of change of X at state (w, x) at time t in equilibrium: max Ẋ(w, x, t) =
max k2(w, x, t)(1− x)−min k1(w, x, t)x. Similarly define

min Ẋ(w, x, t) = min k2(w, x, t)(1− x)−max k1(w, x, t)x,

the minimum rate of change of X in equilibrium at (w, x) at time t. (While there
can be more than one rate of change at certain states, this does not give rise to
multiple equilibrium outcomes since this set has measure zero.) Theorem 9 follows
from the following two facts:

1. For all x ∈ [X,X], let Ω(x, t) be the minimum value of w such that

max Ẋ(w, x, t) ≥ C.

The Lower Isorate Curve, Ωt, is just the set of states (w, x) satisfying w =
Ω(x, t). By Relative Payoff Monotonicity and the Single Crossing Property
(Lemma 4, part 2) min Ẋ(w, x, t) ≥ C at all states (w, x) to the right of this
curve andmax Ẋ(w, x, t) < C at all states (w, x) to the left.
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2. For all x ∈ [X,X], let Ω(x, t) be the maximum value of w such that

min Ẋ(w, x, t) ≤ C.

The Upper Isorate Curve, Ωt, is just the set of states (w, x) satisfying w =
Ω(x, t). By Relative Payoff Monotonicity and the Single Crossing Property
(Lemma 4, part 2) max Ẋ(w, x, t) ≤ C at all states (w, x) to the left of this
curve andmin Ẋ(w, x, t) > C at all states (w, x) to the right.

Q.E.D.Theorem 9

Proof of THEOREM 10. We first prove a property we will call Switching Rate
Continuity. Fix a switching rate k and a time t. The following maxima and minima
exist by Payoff Continuity and the closed graph property (Lemma 4, part 1, p. 45).

1. the minimum Wt such that at state (Wt, Xt), mode-2 agents are willing to
choose a switching rate of k or greater.

2. the maximum Wt such that at state (Wt,Xt), mode-2 agents are willing to
choose a switching rate of k or less.

3. the maximum Wt such that at state (Wt,Xt), mode-1 agents are willing to
choose a switching rate of k or greater.

4. the minimum Wt such that at state (Wt, Xt), mode-1 agents are willing to
choose a switching rate of k or less.

We first prove that these maxima and minima are all continuous functions of
Xt. This is the property of Switching Rate Continuity. Since the four proofs are
essentially the same, we present the first only. Let F (x) be the minimum w such
that at state (w, x), mode-2 agents are willing to choose a switching rate of k or
greater. Given any x, we must show that for any ε > 0 there is a δ > 0 such that
if |x0 − x| < δ, then |F (x0)− F (x)| < ε. Fix w = F (x)− ε. By definition of F ,
since w < F (x), there is a k0 < k such that

k0
¡
V 1(w, x)− V 2(w, x)

¢
− c2(k0, x) > k

¡
V 1(w, x)− V 2(w, x)

¢
− c2(k, x)

If x0 is close enough to x, then by Payoff Continuity and the continuity of c2 in x,
the same inequality holds with x0 in place of x. Thus, w = F (x) − ε < F (x0)
as well. Thus, for any x and ε > 0 there is a δ > 0 such that if |x0 − x| < δ,
then F (x0) > F (x) − ε. We conclude by showing that for any x and ε > 0 there
is a δ > 0 such that if |x0 − x| < δ, then F (x0) < F (x) + ε. Fix x and ε > 0.
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By definition of F , for any w > F (x), a mode-2 agent at state (w, x) is willing to
choose an update rate of at least k: for any k0 < k,

k
¡
V 1(w, x)− V 2(w, x)

¢
− c2(k, x) ≥ k0

¡
V 1(w, x)− V 2(w, x)

¢
− c2(k0, x)

or (k − k0)
¡
V 1(w, x)− V 2(w, x)

¢
≥ c2(k, x)− c2(k0, x)

Now consider w0 = w + ε/2. By Payoff Continuity, there is a δ0 > 0 such that if
|x0 − x| < δ0, then¯̄̄

V 1(w, x0)− V 2(w, x0)−
£
V 1(w, x)− V 2(w, x)

¤¯̄̄
< cε/4

where c is the "strictly positive constant" in the statement of Theorem 4.38 Thus,
by Relative Payoff Monotonicity, if |x0 − x| < δ0 then for any k0 < k,

(k − k0)
¡
V 1(w0, x0)− V 2(w0, x0)

¢
≥ (k − k0)

¡
V 1(w, x0)− V 2(w, x0) + cε/2

¢
≥ (k − k0)

¡
V 1(w, x)− V 2(w, x) + cε/4

¢
≥ c2(k, x)− c2(k0, x) + (k − k0)cε/4

≥ c2(k, x0)− c2(k0, x0) + (k − k0)cε/4− η(k − k0)δ0

where the first inequality follows from Relative Payoff Monotonicity and the last
inequality follows from axiom A6. Thus, by selecting δ0 = min{δ0, cε/4η}, we
have

k
¡
V 1(w0, x0)− V 2(w0, x0)

¢
− c2(k, x0) ≥ k0

¡
V 1(w0, x0)− V 2(w0, x0)

¢
− c2(k0, x0)

for all k0 < k: k is at least as good as any k0 < k at the state (w + ε/2, x0) for all
x0 close enough to x. Thus, w+ ε/2 ≥ F (x0). Since this holds for any w > F (x),
F (x0) < F (x) + ε as claimed: F is continuous. This proves Switching Rate
Continuity.

By Payoff Continuity, Ω(x, t) and Ω(x, t) are continuous functions of t. We
now show that Ω(x, t) is a continuous function of x as well; the proof for Ω(x, t)
is analogous. Let us suppose that Ω(x, t) is not continuous at x. Then for each
ε > 0, there are x0 arbitrarily close to x such that |Ω(x, t)− Ω(x0, t)| > ε. Define
w = Ω(x, t). For such x0, either (i) max Ẋ(w0, x0) ≥ C for some w0 < w − ε or
(ii) max Ẋ(w0, x0) < C for some w0 > w + ε. Assume case (i), which implies
max Ẋ(w − ε, x0) ≥ C. Since max Ẋ(w, x) is right-continuous in w by Lemma
4, there is some δ > 0 such that max Ẋ(w − ε/2, x) ≤ C − δ. By Switching
Rate Continuity, by taking x0 close enough to x, we can find w00 arbitrarily close

38Since x is fixed, this follows from Payoff Continuity alone; uniform continuity in x is not
required.
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to w − ε/2 such that max k2(w00, x0) ≤ max k2(w − ε/2, x) and min k1(w00, x0) ≥
min k1(w − ε/2, x). But then

max Ẋ(w00, x0) = max k2(w00, x0)(1− x0)−min k1(w00, x0)x0

≤ max k2(w − ε/2, x)(1− x0)−min k1(w − ε/2, x)x0

≤ max Ẋ(w − ε/2, x) + 2K |x0 − x| ≤ C − δ + 2K |x0 − x|

which is strictly less than C for |x0 − x| small enough. But since w00 is arbitrarily
close to w − ε/2, it can be taken to be strictly greater than w − ε; this implies that
max Ẋ(w − ε, x0) < C, a contradiction. The proof of case (ii) is analogous. This
shows that Ω(x, t) is a continuous function of x. Finally, under A20, payoffs are
independent of time, which implies by the Switching Rate Rule that Ẋ (and thus
the two Isorate Curves) depends only on the state (Wt,Xt). Q.E.D.Theorem 10

Proof of THEOREM 11. Consider the Isorate Curves at some fixed time t for
some given rate of increase C of X.

1. Suppose the first sufficient condition holds: at least one of K1, K2, and
C is not zero. Suppose Ω(x0, t) < Ω(x0, t) at some x0 ∈ (0, 1). Then
there are w0 > w00 such that min Ẋ(w0, x0) ≤ C ≤ max Ẋ(w00, x0). By
Relative Payoff Monotonicity, the relative value of being in mode 1 is strictly
increasing in w. By Lemma 4, this implies that

min k2(w0, x0)(1− x0)−max k1(w0, x0)x0
= C

= max k2(w00, x0)(1− x0)−min k1(w00, x0)x0

By Switching Rate Monotonicity, there must be constants λ1 and λ2 such that
at the state (w, x0) for all w ∈ [w00, w0],min k1(w, x0) = max k1(w, x0) = λ1
and min k2(w, x0) = max k2(w, x0) = λ2. By Switching Rate Continuity
(see proof of Theorem 10), for m = 1, 2 and for all ε > 0 there is a δ > 0
such that if |x− x0| < δ, then min km(w, x) = max km(w, x) = λm for all
w ∈ [w00 + ε, w0 − ε]. But since one of C, K1, or K2 is not zero, either λ1 >
0 or λ2 > 0. Hence, for any w ∈ [w00 + ε, w0 − ε], max Ẋ(w, x) < C for all
x > x0 such that |x− x0| < δ andmin Ẋ(w, x) > C for all x < x0 such that
|x− x0| < δ. But this contradicts Isorate Curve Continuity (Theorem 10).

2. Suppose the first sufficient condition fails but the second one holds. By
Relative Payoff Monotonicity, for any x there is a unique value w of the
payoff parameter such that the relative value of being in mode 1, V 1 − V 2,
is zero at (w, x). At any state (w0, x) where w0 > w (w0 < w), this relative
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value is strictly positive (negative). Hence, by the second sufficient condition
and the fact that K1 = K2 = 0, Ẋ must be strictly positive (strictly negative):
the Isorate curves for C = 0 coincide. Q.E.D.Theorem 11

Proof of THEOREM 12. By assumption, both switching cost functions are
weakly increasing and left-continuous in the switching rate and Lipschitz in Xt.
Substituting, D(w, x, k1, k2) = D(w, x, δ, θ) = ωf(w, x) + cA(θ, x). Strategic
Complementarities holds by assumption that f(w, x) is increasing and Lipschitz in
both arguments, and cA is weakly increasing and Lipschitz in x. Payoff Monotonic-
ity holds since f(w, x) is strictly increasing in w. There is a bounded effect of x
on marginal cost by assumption. Consider now the upper Dominance Region. By
taking Wt arbitrarily high, we can ensure that the surplus will remain positive for an
arbitrarily long time with arbitrarily high probability, so the optimal layoff rate is
zero and the optimal hiring rate is θ for an arbitrarily long time. Thus, by equation
(18), V F

t − V U
t can be made arbitrarily close to

lim
w→∞

E

⎡⎣ ∞Z
v=t

exp

µ
−

vR
s=t

£
r + δ + θ

¤
ds

¶¡
ωf(Wv, Xv) + cA(θ,Xv)

¢
dv | Wt = w

⎤⎦
This is at least ω limw↑+∞ f(w,0)

r+δ+θ
. By assumption, for anyX, cAθ (θ,X) <

ω limw↑+∞ f(w,0)

r+δ+θ
.

The Switching Rate Rule now implies that θt = θ is strictly dominant for high
enough Wt. The proof that there exists a lower Dominance Region is analogous.
Q.E.D.Theorem 12.

Proof of THEOREM 13. From standard results in probability theory,39 player i’s
posterior over θ is θpost

i ∼ N
³

xi
1+σ2

, σ2

1+σ2

´
and so her posterior over xj = θpost

i + εj ,

the sum of two independent random variables, is distributed N
³

xi
1+σ2

, σ2

1+σ2
+ σ2

´
.

Let the c.d.f. of this distribution be F (xj|xi).
We will look for cutoff equilibria in which a player plays R if her signal exceeds

some threshold x∗ and L otherwise. For this to be an equilibrium, a player with

39Suppose we have a variable x0 ∼ N(x, V0) to estimate. We observe the variables xj = x0+εj
for j = 1, ..., J , where each εj ∼ N(0, Vj) is independent of every εj0 and of x0. Define the
precision of variable j to be wj = 1/Vj . Then the posterior distribution of x0 is

x+xposterior
0 ∼ N

Ã PJ
j=1wj [xj − x]PJ

j=0wj

,
1PJ

j=0wj

!

78

Advances in Theoretical Economics , Vol. 5 [2005], Iss. 1, Art. 2

Brought to you by | Iowa State University
Authenticated | 129.186.1.55

Download Date | 9/19/12 5:26 PM



signal xi = x∗ must be indifferent between R and L. A player i who thinks her
opponent will play R with probability p gets the expected payoff cxi + p from
playing R and 1 − p from playing L. The relative payoff from playing R is thus
cxi + 2p − 1. Since p = 1 − F (x∗|xi), in a threshold equilibrium with cutoff x∗
a player’s relative payoff from playing R if her signal is xi is f(xi, x∗) = cxi +
2 [1− F (x∗|xi)]− 1. x∗ is a threshold equilibrium if f(x∗, x∗) = 0, f(x, x∗) ≥ 0
for x > x∗, and f(x, x∗) ≤ 0 for x < x∗. Since f is strictly increasing in its first
argument, the last two conditions always hold.

By inspection, f is continuous, so f(x, x) > 0 for x > 1/c and f(x, x) < 0 for
x < −1/c. In addition, F (0|0) = 1/2, so f(0, 0) = 0. Thus, if for small enough
c we can show that f(x, x) is decreasing in x when x = 0, there must be points
1/c ≥ x1 > 0 > x2 ≥ −1/c such that f(xn, xn) = 0 for n = 1, 2. As long as
σ2 > 0, dF (x|x)

dx

¯̄̄̄
x=0

< 0, since F (0|0) = 1/2 and F (x|x) < 1/2 for x > 0. Thus,

by choosing c close enough to zero, one obtains df(x,x)
dx

¯̄̄̄
x=0

= c−2 dF (x|x)
dx

¯̄̄̄
x=0

< 0,
as claimed. Q.E.D.Theorem 13

Proof of LEMMA 1. The argument of Lemma 3 implies that¯̄̄
V 1
w − V 2

w

¯̄̄
≤ maxx∈[0,1] |∆u(0, x)|

r
+E

Z ∞

s=w

e−r(s−w)α |Ws| ds

and
E |Ws| ≤ |EWs|+

p
Var (Ws)

where all expectations are conditioned on Ww. If ν = 0, then as of time w < s,
EWs =Ww and Var(Ws) = σ2(s− w), respectively. Thus,

|EWs| ≤ |Ww|+ σ
√
s− w

Hence,40

¯̄̄
V 1
w − V 2

w

¯̄̄
≤ maxx∈[0,1] |∆u(0, x)|

r
+

Z ∞

s=w

e−r(s−w)α
¡
|Ww|+ σ

√
s− w

¢
ds

≤ maxx∈[0,1] |∆u(0, x)|
r

+ α

∙
|Ww|
r

+ σ +
σ

r2

¸
= c0 |Ww|+ c1

40This uses the fact that for any z ≥ 0,
√
z ≤ 1 if z ≤ 1 and

√
z ≤ z if z ≥ 1, and e−rz ≤ 1, soZ ∞

s=v

e−r(s−v)
√
s− vds ≤ 1 + 1

r2
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This establishes the first bound in part 1. If ν > 0, then by Lemma 2, as of time
w ≤ s, Ws is normal with mean e−ν(s−w)Ww +

¡
1− e−ν(s−w)

¢
Wmean and variance

σ2

2ν

¡
1− e−2ν(s−w)

¢
. Thus,

|EWs| ≤ |Ww|+ |Wmean|
¡
1− e−ν(s−w)

¢
+ σ

r
1− e−2ν(s−w)

2ν

Hence,41

¯̄̄
V 1
w − V 2

w

¯̄̄
≤ maxx∈[0,1] |∆u(0, x)|

r

+

Z ∞

s=w

e−r(s−w)α

Ã
|Ww|+ |Wmean|

¡
1− e−ν(s−w)

¢
+ σ

r
1− e−2ν(s−w)

2ν

!
ds

≤ maxx∈[0,1] |∆u(0, x)|
r

+ α

∙
|Ww|+ |Wmean|

r
− |Wmean|

r + ν
+

σ

r
√
2ν

¸
= c0 |Ww|+ c01

This establishes the second bound in part 1, for the case of mean reversion.
We now prove part 2. First suppose ν = 0. Denote by ∆V (w) the relative

value of being in mode 1 if an agent believes that all other agents will remain in
mode 2 forever and she picks optimal switching rates given these beliefs. Since
this is the scenario that makes mode 1 the least appealing, it yields a lower bound
on V 1

t −V 2
t . By the Upper Bounds, ∆V (0) ≥ −c1. By the Envelope Theorem and

(26), for any ε > 0, ∆V (w + ε) − ∆V (w) ≥ αε
r+2K

, since increasing the starting
value Wt by some ε > 0 is equivalent to adding ε to Ww for all times w ≥ t but
retaining the same probability distribution over sample paths (Ww)w≥t.42 Thus,
∆V (w) ≥ −c1 + αw

r+2K
as claimed. The proof for V 2

t − V 1
t is analogous.

41This uses the fact thatZ ∞
s=w

e−r(s−w)ασ

r
1− e−2ν(s−w)

2ν
ds =

ασ√
2ν

Z ∞
s=w

e−r(s−w)
p
1− e−2ν(s−w)ds

≤ ασ√
2ν

Z ∞
s=w

e−r(s−w)ds =
ασ

r
√
2ν

42This application of the Envelope Theorem is valid even though the switching rates need not be
continuous in the payoff parameter. This is because at points where a small change in b causes a
switching rate to jump from k to k0 at some date w ≥ t for some sample path (Bw)w≥t, the agent is
indifferent between the two rates k and k0, so the jump does not affect the relative value of being in
mode 1.
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Now suppose ν > 0. By the Upper Bounds, ∆V (0) ≥ −c01. By Lemma
2, increasing the starting value Wt by some ε > 0 is now equivalent to adding
εe−ν(w−t) to Ww for all times w ≥ t and retaining the same probability distribution
over paths of W . (I.e., the new payoff parameter follows the path εe−ν(w−t) +Ww

where the probability distribution over the paths (Ww)w≥t is unchanged.) Hence,
by the Envelope Theorem and (26), ∆V (w+ε)−∆V (w) ≥ αε

r+2K+ν
, so ∆V (w) ≥

−c01 + αw
r+2K+ν

. The proof for V 2
t − V 1

t is analogous. Q.E.D.Lemma 1
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Symbol Definition First Used
t time p. 5
δ attrition rate (HM) p. 5
X proportion of jobs that are filled (HM) p. 5
X proportion of players in mode 1 p. 6
f(X) worker-firm surplus - no shocks (HM) p. 5
f(W,X) worker-firm surplus - shocks (HM) p. 5
ω firms’ fixed fraction of surplus (HM) p. 5
θ firm hiring intensity (HM) p. 5
θ maximum hiring intensity (HM) p. 5
cA(θ,X) firm hiring cost function (HM) p. 5
W the (stochastic) payoff parameter p. 5
Et expectation as of time t p. 6
r constant discount rate p. 6
φs indicator function for filled job (HM) p. 6
km switching rate of players in mode m = 1, 2 p. 6£
Km, K

m¤ interval from which players choose km p. 6
K upper bound on switching rate in any mode p. 6
cm(km,X) switching cost function in mode m = 1, 2 p. 7
u(m,W,X) direct utility flow in mode m = 1, 2 p. 7
µ(t,W ) drift of general Ito process p. 8
σ2(t,W ) variance of general ito process p. 8
µt constant term in W ’s drift under assumption A2 p. 8
νt linear coefficient in W ’s drift under assumption A2 p. 8
σ2t variance term in W ’s drift under assumption A2 p. 8
B Brownian motion with zero drift and unit variance p. 8
N1, N2 Bounds on parameters of W (Assumption A2) p. 8
µ, σ Constant drift and variance of W under A20 p. 9

Table 1: Notation used in body of paper, part 1.
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Symbol Definition First Used
D(W,X, k1, k2) Relative payoff flow in mode 1 p. 9
β Upper bound of effect of X p. 9

on relative payoff flow in mode 1
α Upper bound of effect of W p. 9

on relative payoff flow in mode 1
(w1, w2) Interval over which D strictly increasing in W p. 9
w Boundary of upper dominance region p. 10
w Boundary of lower dominance region p. 10
η Upper bound on effect of X p. 10

on marginal switching costs
cmk Marginal cost of raising switching rate p. 10

when in mode m = 1, 2
V m
t = V m(W,X, t) Continuation payoff of player p. 11

who is locked into mode m = 1, 2
V 1 − V 2 Relative value of being in mode 1 p. 4.1
Ẋ Rate of increase of X p. 12
C Rate of increase of X used in definition p. 14

of Isorate curves
[X,X] Interval in which X can feasibly rise p. 14

at some given rate
V F = V F (W,X, t) Continuation payoff of firm p. 19

with filled position in HM
V U = V U(W,X, t) Continuation payoff of firm p. 19

with unfilled position in HM

Table 2: Notation used in body of paper, part 2.
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